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[1] The current study evaluates the impacts of various sources of uncertainty involved in
hydrologic modeling on parameter behavior and regionalization utilizing different Bayesian
likelihood functions and the Differential Evolution Adaptive Metropolis (DREAM)
algorithm. The developed likelihood functions differ in their underlying assumptions and
treatment of error sources. We apply the developed method to a snow accumulation and
ablation model (National Weather Service SNOW17) and generate parameter ensembles to
predict snow water equivalent (SWE). Observational data include precipitation and air
temperature forcing along with SWE measurements from 24 sites with diverse hydroclimatic
characteristics. A multiple linear regression model is used to construct regionalization
relationships between model parameters and site characteristics. Results indicate that model
structural uncertainty has the largest influence on SNOW17 parameter behavior.
Precipitation uncertainty is the second largest source of uncertainty, showing greater impact
at wetter sites. Measurement uncertainty in SWE tends to have little impact on the final
model parameters and resulting SWE predictions. Considering all sources of uncertainty,
parameters related to air temperature and snowfall fraction exhibit the strongest correlations
to site characteristics. Parameters related to the length of the melting period also show high
correlation to site characteristics. Finally, model structural uncertainty and precipitation
uncertainty dramatically alter parameter regionalization relationships in comparison to cases
where only uncertainty in model parameters or output measurements is considered. Our
results demonstrate that accurate treatment of forcing, parameter, model structural, and
calibration data errors is critical for deriving robust regionalization relationships.
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1. Introduction
[2] Snow plays a critical role in the hydrologic cycle in

terms of both water supply and regional and global surface
energy budgets [e.g., Cayan, 1996; Andreadis and Letten-
maier, 2006; Durand and Margulis, 2006]. There is strong
evidence of snowpack decline and altered melt timing in
response to atmospheric warming in the western United
States [Cayan et al., 2001; Mote, 2003; Service, 2004;
Stewart et al., 2004; Mote et al., 2005; Kapnick and Hall,

2010]. Changes in snowpack depth and melt patterns make
accurate prediction of snowmelt increasingly critical, par-
ticularly in light of a changing climate [Franz et al., 2008].
Snow models are generally developed and applied to simu-
late snow accumulation and ablation processes and subse-
quently predict snowmelt. There have been numerous snow
modeling studies simulating the mass and energy evolution
and thus the snow water equivalent (SWE) of the snowpack
via different models (e.g., SNOW17 of Anderson [1973],
UEB of Tarboton and Luce [1996], SAST of Jin et al.
[1999], ESCIMO of Strasser et al. [2002], and SNOWCAN
of Tribbeck et al. [2004]).

[3] There are a range of snow models with varying com-
plexities. However, successful application relies heavily on
the accuracy of associated model parameters [e.g., Franz
et al., 2008]. Many parameters cannot be determined
directly from the field and can only be derived from calibra-
tion against in situ or remotely sensed snow measurements.
In the past several decades, a variety of parameter estima-
tion methods have been developed and reported in the
hydrologic literature. These methods include the maximum
likelihood algorithm [Restrepo and Bras, 1985], the general-
ized likelihood uncertainty estimation (GLUE) [Beven and
Binley, 1992], the shuffled complex evolution (SCE-UA)
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algorithm [Duan et al., 1992], the multistep automatic cali-
bration scheme [Hogue et al., 2000, 2006b], the Bayesian
recursive estimation (BARE) [Thiemann et al., 2001], the
Parameter Identification Methods Based on the Localization
of Information (PIMLI) [Vrugt et al., 2002], the Dynamic
Identifiability Analysis (DYNIA) [Wagener et al., 2003],
and Markov chain Monte Carlo (MCMC) methods, includ-
ing the random walk Metropolis algorithm [Kuczera and
Parent, 1998], the shuffled complex evolution Metropolis
(SCEM-UA) algorithm [Vrugt et al., 2003], and the Differ-
ential Evolution Adaptive Metropolis (DREAM) method
[Vrugt et al., 2008a, 2008b]. Most of these methods attrib-
ute the mismatch between model predictions and calibration
data to parameter uncertainty, without recourse for consid-
ering other sources of error. These error sources, including
uncertainty associated with forcing (input) data, calibration
observations, and model structure (which includes the nu-
merical time-stepping schemes applied to solve governing
model equations) [Kitanidis and Bras, 1980; Beck, 1987;
Muleta and Nicklow, 2005; Beven, 2006; Gupta et al.,
2006; Clark and Kavetski, 2010; Kavetski and Clark,
2010; Schoups et al., 2010], are difficult to determine ex-
plicitly in practice, particularly because there is no widely
agreed upon method to characterize them [Liu and Gupta,
2007; Montanari, 2007; Gotzinger and Bardossy, 2008;
Vrugt et al., 2008a]. A few methods have recently emerged
to investigate model forcing and/or structural uncertainty.
These methods include the Bayesian model averaging
(BMA) [Duan et al., 2007; Vrugt and Robinson, 2007;
Franz et al., 2010], the integrated Bayesian uncertainty esti-
mator (IBUNE) [Ajami et al., 2007], the Bayesian total error
analysis (BATEA) and closely related developments
[Kavetski et al., 2002, 2006; Kuczera et al., 2006; Thyer et
al., 2009; Renard et al., 2010], the Simultaneous Optimiza-
tion and Data Assimilation (SODA) [Vrugt et al., 2005],
and the Framework for Understanding Structural Errors
(FUSE) [Clark et al., 2008; Clark and Kavetski, 2010].
However, these algorithms have not been commonly
applied in practice, partly because of their computational
requirements.

[4] Regionalization provides an alternative approach to
parameter estimation in which neighboring catchments that
exhibit similar geology, soil, vegetation, and climate are
used to transfer parameters [e.g., Merz and Bloschl, 2004;
Wagener and Wheater, 2006; Oudin et al., 2008; Buytaert
and Beven, 2009]. Regression relationships between catch-
ment characteristics and snow model parameters can also
be developed. Such relationships can be built for gauged
catchments and used to derive the parameters for ungauged
(observation free) catchments. However, such relationships
rely on the initial (gauged) model calibration, which is
largely dependent on treatment of the various above men-
tioned error sources. As such, regionalization relationships
also vary with how different errors are treated when estab-
lishing these relationships. In addition, because snow sta-
tions are selected primarily on the basis of the criteria of
accessibility, safety of surveyors and maintainers, and pro-
tection from public disturbance [Molotch and Bales, 2005],
the current snow observational network across the United
States is sparse, leaving most snow-covered regions unga-
uged. For instance, there are over 1700 sites in the western
United States at which SWE is measured. However, they are

still not sufficient to resolve SWE variability at the watershed
scale [Bales et al., 2006]. A comprehensive assessment of
the impact of various uncertainty sources on snow model pa-
rameter behavior and regionalization relationships (among
watershed characteristics and related snow model parame-
ters) holds considerable potential for improved snowmelt
predictions in ungauged snow-covered regions.

[5] The primary goal of the current study is to assess the
impact of various sources of uncertainty on parameter
behavior and model predictive uncertainty for a commonly
applied snow model (SNOW17 of the National Weather
Service (NWS)). We consider four different scenarios that
differ in their underlying assumptions about the treatment
of uncertainty. The secondary goal is to evaluate the
impact of these error sources on the regionalization infor-
mation of parameters. We utilize the recently developed
DREAM algorithm [Vrugt et al., 2008a, 2008b] and use
different likelihood functions to define the four uncertainty
scenarios. The DREAM algorithm is an adaptation of the
SCEM-UA [Vrugt et al., 2003] and has advantages over
the SCEM-UA in the context of maintaining detailed bal-
ance and ergodicity [Vrugt et al., 2008b, 2009] while also
being efficient [Vrugt et al., 2008b]. We compare posterior
parameters for each likelihood function at 24 contrasting
study sites. We are especially concerned with analyzing
the uncertainty, correlation, and probability density of
these posterior parameters. In addition, we evaluate model
performance configured with different uncertainty sources
in the context of providing SWE estimates at these cli-
matically distinct sites. Furthermore, we develop a simple
multiple linear regression model to construct potential
regionalization relationships between SNOW17 parame-
ters and site hydroclimatic characteristics under the vari-
ous uncertainty scenarios considered.

2. Snow Model and Data Sets
[6] We apply the SNOW17 model at a range of Snow

Telemetry (SNOTEL) sites maintained by the Natural
Resources Conservation Service. It is generally recognized
that a thorough investigation at the point scale provides
critical insight on model behavior necessary for applying
the model at larger scales [Hogue et al., 2006a; Slater and
Clark, 2006; Franz et al., 2008; He, 2010]. In addition, the
majority of ground-based snow observations utilized in
operational forecasting are at the point scale. Although
there are errors in SNOTEL observations, they are still the
most widely used and longest record of snow information
available across an extensive range of climatic and hydro-
logic regimes [Serreze et al., 1999].

2.1. SNOW17 Model
[7] The NWS uses the SNOW17 model as part of their

streamflow forecasting system in snow-dominated regions.
The model uses empirically based relationships to simulate
the heat storage of the snowpack, snowmelt, liquid water
retention, and transmission. It requires air temperature and
precipitation as inputs, while outputs include a rain plus
snowmelt time series as well as SWE. SNOW17 is primar-
ily controlled by 10 parameters when applied at the point
scale (Figure 1 and Table 1) [Anderson, 2002; Franz et al.,
2008; He et al., 2011].
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[8] Gauge catch errors are accounted for using a snow
correction factor (SCF, dimensionless). Snowfall input to
the model, Ps (mm), is calculated as

Ps ¼ PfsSCF; ð1Þ

where P (mm) is the observed precipitation and fs (dimen-
sionless) represents the fraction of precipitation in the form
of snow and is formulated as

fs ¼
1; Ta � PXTEMP

0; Ta > PXTEMP

�
; ð2Þ

where Ta (�C) represents the observed air temperature and
PXTEMP (�C) is the temperature that distinguishes snow-
fall from rainfall. SCF (dimensionless) and PXTEMP (�C)
are the primary factors controlling snow input to the model.
Heat exchange during nonmelt periods is controlled by pa-
rameters NMF (mm per 6 h per �C) and TIPM (dimension-
less) [Anderson, 1973]. Snowmelt during nonrain periods,
M (mm), is calculated as

M ¼ Mf ðTa �MBASEÞ; ð3Þ

where Mf is the melt factor (mm �C�1) and MBASE (�C) sig-
nifies the threshold temperature above which snowmelt
occurs. The melt factor is estimated through the use of a

sinusoidal function bounded by parameters MFMIN (mm per
6 h per �C) and MFMAX (mm per 6 h per �C). The parame-
ter MFMIN dominates melt prior to 21 March, and MFMAX
influences melt more significantly after 21 March [NWS,
2004]. During rain-on-snow periods, melt is primarily a func-
tion of the parameter UADJ (mm per mbar per �C) which
influences wind advection. The parameter DAYGM (mm
d�1) is used to characterize geothermal heat flux at the ground
surface and to allow for a constant melt rate at the soil-snow
interface. A more detailed description of the SNOW17 model
is given by Anderson [1973] and He et al. [2011].

2.2. Study Sites
[9] The western United States contains an extensive

SNOTEL network, which records measurements of precipi-
tation, air temperature, SWE, and snow depth [Crook,
1977]. Despite the extensive spatial coverage, there have
been only a few attempts to use SNOTEL data in research
studies or operational forecasting [Serreze et al., 1999,
2001; Fassnacht et al., 2003; Franz, 2006; Slater and
Clark, 2006] because of a range of concerns [Doesken and
Schaefer, 1987; Fassnacht et al., 2003]. Serreze et al.
[1999] developed a method to evaluate the quality of SNO-
TEL data, screen outliers, and eliminate negative precipita-
tion and SWE data (also applied by Serreze et al. [2001]
and Fassnacht et al. [2003]). In the current study, we uti-
lize data from 24 SNOTEL sites (Table 2), focusing on

Figure 1. Schematic of SNOW17 model processes and corresponding parameters. The boxes designate
model processes, and model inputs and output are highlighted in bold. Adapted from Anderson [1973].

Table 1. Parameters of the SNOW17 Model With Ranges Estimated From Anderson [1973] and Franz et al. [2008]

Parameters Explanation Unit Ranges

SCF Snow fall correction factor - 0.7–1.4
MFMAX Maximum melt factor mm per 6 h per �C 0.5–2.0
MFMIN Minimum melt factor mm per 6 h per �C 0.05–0.49
UADJ The average wind function during rain-on-snow periods mm per mbar per �C 0.03–0.19
NMF Maximum negative melt factor mm per 6 h per �C 0.05–0.50

MBASE Base temperature for nonrain melt factor �C 0–1.0
PXTEMP Temperature that separates rain from snow �C �2.0–2.0
PLWHC Percent of liquid water capacity - 0.02–0.3
DAYGM Daily melt at snow-soil interface mm d�1 0–0.3

TIPM Antecedent snow temperature index parameter - 0.1–1.0

W07546 HE ET AL.: MODEL AND DATA FORCING ERROR CORRUPT REGIONALIZATION W07546

3 of 17



T
ab

le
2.

Su
m

m
ar

y
of

Se
le

ct
ed

SN
O

T
E

L
Si

te
s

an
d

R
el

at
ed

G
eo

ph
ys

ic
al

In
fo

rm
at

io
na

Si
te

Si
te

N
am

e
St

at
e

E
le

va
tio

n
(m

)
C

lim
at

e
R

eg
io

n
D

at
a

Pe
ri

od
(W

at
er

Y
ea

r)
M

ax
im

um
SW

E
(m

m
)

A
nn

ua
l

T
em

pe
ra

tu
re

(�
C

)

A
nn

ua
l

Pr
ec

ip
ita

tio
n

(m
m

)
Sn

ow
fa

ll
Fr

ac
tio

n

D
at

e
of

M
ax

im
um

SW
E

D
at

e
of

D
is

ap
pe

ar
an

ce
of

Sn
ow

D
ay

s
of

Sn
ow

m
el

t

M
C

M
ou

nt
C

ra
g

W
as

hi
ng

to
n

12
07

1
19

91
–2

00
8

20
73

4.
35

19
22

0.
42

3
A

pr
6

Ju
n

63
H

M
H

ol
la

nd
M

ea
do

w
s

O
re

go
n

15
03

1
19

84
–2

00
8

12
55

6.
36

19
64

0.
34

3
M

ar
18

M
ay

66
L

H
L

os
tH

or
se

W
as

hi
ng

to
n

15
60

1
19

91
–2

00
8

95
0

4.
2

87
7

0.
6

25
M

ar
15

M
ay

51
W

C
W

ar
d

C
re

ek
#3

C
al

if
or

ni
a

20
28

2
19

91
–2

00
8

14
15

5.
17

18
45

0.
58

2
A

pr
27

M
ay

55
IL

In
de

pe
nd

en
ce

L
ak

e
C

al
if

or
ni

a
25

46
2

19
95

–2
00

8
20

68
4.

38
21

51
b

0.
6

29
A

pr
2

Ju
l

63
L

L
L

ea
vi

tt
L

ak
e

C
al

if
or

ni
a

29
31

2
19

90
–2

00
8

28
07

2.
74

25
03

b
0.

64
25

A
pr

4
Ju

l
69

E
S

E
m

ig
ra

nt
Sp

ri
ng

s
O

re
go

n
11

58
3

19
85

–2
00

8
31

2
7.

65
86

5
0.

2
12

Fe
b

11
A

pr
58

T
P

T
ip

on
O

re
go

n
15

70
3

19
90

–2
00

8
43

9
5.

37
58

9
0.

52
18

M
ar

2
M

ay
44

M
H

M
ou

nt
H

ow
ar

d
O

re
go

n
24

11
3

19
90

–2
00

8
92

7
1.

73
11

28
0.

48
27

A
pr

31
M

ay
43

B
K

B
is

so
n

C
re

ek
M

on
ta

na
15

00
4

19
93

–2
00

8
50

3
4.

34
83

2
0.

32
8

A
pr

13
M

ay
35

SM
So

ut
h

M
ou

nt
ai

n
Id

ah
o

19
81

4
19

85
–2

00
8

82
8

6.
44

91
9b

0.
52

18
M

ar
6

M
ay

48
M

L
M

ea
do

w
L

ak
e

Id
ah

o
27

89
4

19
90

–2
00

8
77

7
1.

04
80

1
0.

61
28

A
pr

10
Ju

n
43

B
C

B
as

e
C

am
p

W
yo

m
in

g
21

43
5

19
89

–2
00

8
77

7
2.

37
86

4
0.

55
31

M
ar

16
M

ay
47

T
D

T
hu

m
b

D
iv

id
e

W
yo

m
in

g
24

32
5

19
90

–2
00

8
83

6
1.

02
75

8
0.

58
11

A
pr

24
M

ay
42

C
B

C
ar

ro
tB

as
in

M
on

ta
na

27
43

5
19

84
–2

00
8

11
94

0.
36

11
21

0.
73

5
M

ay
26

Ju
n

52
R

C
R

oc
k

C
re

ek
U

ta
h

24
04

6
19

87
–2

00
8

45
2

4.
1

58
5

0.
44

26
M

ar
26

A
pr

31
L

M
L

as
al

M
ou

nt
ai

n
U

ta
h

29
14

6
19

89
–2

00
8

58
2

3.
87

81
9

0.
4

25
M

ar
11

M
ay

46
C

P
C

he
pe

ta
U

ta
h

32
28

6
19

90
–2

00
8

92
2

�
0.

14
79

2
0.

54
15

A
pr

27
M

ay
43

C
S

C
ro

sh
o

C
ol

or
ad

o
27

74
7

19
87

–2
00

8
51

6
3.

06
71

7
0.

47
5

A
pr

10
M

ay
35

B
L

B
ru

m
le

y
C

ol
or

ad
o

32
31

7
19

87
–2

00
8

48
5

�
0.

45
62

4
0.

48
16

A
pr

19
M

ay
32

V
L

V
al

le
ci

to
C

ol
or

ad
o

33
16

7
19

87
–2

00
8

87
4

2.
56

86
5

0.
57

5
A

pr
20

M
ay

44
W

H
W

hi
te

H
or

se
L

ak
e

A
ri

zo
na

21
18

8
19

90
–2

00
8

34
3

7.
94

62
8

0.
22

27
Fe

b
2

A
pr

33
L

N
L

oo
ko

ut
M

ou
nt

ai
n

N
ew

M
ex

ic
o

25
91

8
19

86
–2

00
8

10
4

8.
68

45
0

0.
15

7
Fe

b
2

A
pr

54
SC

Si
lv

er
C

re
ek

D
iv

id
e

N
ew

M
ex

ic
o

27
43

8
19

90
–2

00
8

63
0

5.
64

67
1

0.
44

4
M

ar
19

A
pr

45

a St
at

is
tic

s
ar

e
co

m
pu

te
d

by
w

at
er

ye
ar

(W
Y

)
an

d
in

cl
ud

e
av

er
ag

e
m

ax
im

um
sn

ow
w

at
er

eq
ui

va
le

nt
(S

W
E

),
da

te
of

m
ax

im
um

SW
E

,a
ve

ra
ge

da
te

of
di

sa
pp

ea
ra

nc
e

of
sn

ow
,a

ve
ra

ge
nu

m
be

r
of

da
ys

of
sn

ow
m

el
t

(p
er

io
d

fr
om

th
e

da
y

SW
E

pe
ak

s
un

til
co

m
pl

et
e

m
el

to
ut

),
an

d
m

ea
n

an
nu

al
te

m
pe

ra
tu

re
an

d
pr

ec
ip

ita
tio

n.
b C

or
re

ct
ed

va
lu

es
ob

ta
in

ed
by

ap
pl

yi
ng

th
e

m
et

ho
d

of
Se

rr
ez

e
et

al
.[

19
99

].

W07546 HE ET AL.: MODEL AND DATA FORCING ERROR CORRUPT REGIONALIZATION W07546

4 of 17



three elevation levels (low, median, and high) in each of
eight predefined climatic regions [Serreze et al., 1999]
(Figure 2). Additionally, the 24 sites reside within, or in
close proximity to, NWS forecast basins. Elevation of the
selected study sites varies from 1158 m (site ES, Oregon)
to 3316 m (site VL, Colorado) (Table 2).

2.3. Data Sets
[10] Quality control procedures outlined by Serreze et al.

[1999] are used to screen SWE, precipitation, and tempera-
ture data from the 24 sites. Three of the sites (SM (Idaho), IL
(California), and LL (California)) contain snowfall fractions
(ratio of annual maximum SWE to annual total precipitation)
greater than 1.0 for several years and are corrected using pre-
cipitation undercatch methods reported in the literature [Ser-
reze et al., 1999; He et al., 2011]. In addition, about 1% of
all data requires linear interpolation to fill short periods with
missing data. After data processing, adequate time series are
produced for periods ranging from 14 to 25 years. The final
time period selected for study across all sites is water year
(WY) 1995 to WY 2008 (14 years).

[11] Mean annual precipitation and maximum SWE at
sites MC (Washington), HM (Oregon), WC (California), IL
(California), and LL (California) are significantly higher
than the other study sites (Table 2). These five sites are
located in the windward side of the western mountains (Pa-
cific Northwest and Sierra Nevada), where orographic
effects deposit moist Pacific air [Mock, 1996]. These sites
have an average melt period of 65 days. In comparison, the
average melt period for the remaining sites in the interior
regions is 44 days. Snowfall fractions at sites SC (New
Mexico), LN (New Mexico), and WH (Arizona) (Arizona
and New Mexico region) are generally lower, indicative of
higher temperature and lower winter precipitation in this
region. The SWE peak occurs earliest at site LN (New
Mexico), while the peak occurs latest at site CB (Montana).

The snow melt-out date occurs earliest at sites LN (New
Mexico) and WH (Arizona) and latest at sites IL (Califor-
nia) and LL (California). On average, most precipitation
occurs in late fall and winter (November to March) at the
study sites (Figure 3a). In contrast, precipitation in summer
months (June to September) is much less. Air temperature
at all sites shows significant seasonal variation (Figure 3b).
In general, the snow accumulation season is from October
to April, and the ablation season is from April to July (Fig-
ure 3c). These observations are generally consistent with
the regional analysis of Serreze et al. [1999] for the same
climate zones.

[12] The mean annual precipitation of the study sites
ranges from 450 mm (site LN, New Mexico) to 2503 mm
(site LL, California) ; mean annual temperature varies from
�0.45�C (site BL, Colorado) to 8.68�C (site LN, New
Mexico); mean annual snowfall fraction ranges from 0.15
(site LN, New Mexico) to 0.73 (site CB, Montana) (Table
2). Monthly precipitation, temperature, and SWE also show
significant variations at different sites (Figure 3). The vari-
ability in our data sets exemplifies the fact that the selected
sites cover diverse topographic and meteorological charac-
teristics in the western United States and are spatially rep-
resentative for this study.

3. Methods
3.1. SNOW17 Model Representation

[13] Let eX and eY denote observed model forcing (i.e.,
precipitation and air temperature) and observed model out-
put (i.e., SWE), respectively. Let bX denote model inputs
(i.e., adjusted snowfall and air temperature) and let � be the
SNOW17 model parameters (the parameters tabulated in
Table 1 except for SCF and PXTEMP). The SNOW17
model can be written schematically as follows

bY ¼ f ðbX ; �Þ: ð4Þ

Figure 2. Location of 24 study sites (dots) as well as eight regions (boxes) that encompass the study
sites. The regions and the median elevation of SNOTEL sites within the regions are 1, Pacific Northwest
(1422 m); 2, Sierra Nevada (2439 m); 3, Blue Mountains, Oregon (1646 m); 4, Idaho and western Mon-
tana (1905 m); 5, NW Wyoming (2479 m); 6, Utah (2774 m); 7, Colorado (3037 m); 8, Arizona and
New Mexico (2418m). Detailed information on the regions is given by Serreze et al. [1999].
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[14] It is worth noting the following: first, bX is computed
from eX via SCF and PXTEMP through the relationship
stated in equations (1) and (2); second, all simulations in
this study start at a zero SWE (i.e., October 1), therefore,
all SNOW17 states are zero at the beginning of the simula-
tion. Initial conditions are thus not included in equation (4).

[15] To assess if f accurately represents measured snow
dynamics, it is a standard practice to compare measured eY
and simulated bY via the following error vector:

eð�Þ ¼ f"1ð�Þ; "2ð�Þ; :::; "T ð�Þg; ð5Þ

where "tð�Þ designates the residual at day t, "tð�Þ ¼ byt � eyt,
t ¼ 1, 2, . . . , T, and T represents the total number of days of
the simulation period. For convenience, this vector is typi-
cally aggregated in a single error term, the sum of squared
residuals (SSR)

SSR ¼
XT

t¼1

"tð�Þ2: ð6Þ

[16] Minimization of SSR is typically achieved by tuning
(calibrating) model parameters, without consideration of
errors in model forcing, calibration data, and model struc-
ture (i.e., inadequacies in f ).

3.2. Bayesian Inference of Posterior Probability
Density Function of Model Parameters

[17] In the past decade, various optimization algorithms
have been developed to minimize equation (6). These algo-
rithms either provide an estimate of the optimal parameter
set (e.g., SCE-UA of Duan et al. [1992]) or derive the entire
underlying posterior probability density function (pdf) of

the parameters (e.g., SCEM-UA of Vrugt et al. [2003]). The
posterior pdf helps simulate predictive uncertainty of f.
However, it would be more ideal to evaluate the posterior
pdf of � and the predictive distribution of bY in the presence
of other uncertainty sources (i.e., data forcing, model struc-
ture, and SWE measurements). This can be achieved in the
context of Bayesian statistics coupled with Monte Carlo
sampling. The Bayesian paradigm offers the flexibility of
combining multiple sources of uncertainty on the basis of
Bayes’ theorem. Following the standard Bayesian law, the
posterior pdf of the SNOW17 parameters after conditioning
on the observed SWE (eY ), pð� eY�� Þ, can be expressed as

pð� eY�� Þ ¼ pðeY ���Þpð�Þ
pðeY Þ ; ð7Þ

where pðeY ���Þ, pð�Þ, and pðeY Þ represent the data likelihood,
a prior parameter distribution, and the probability density
of observing the SWE, respectively. It is usually infeasible
to directly calculate pðeY Þ. The typical practice is to refor-
mulate equation (7) as follows:

pð� eY�� Þ / Lð� eY�� Þpð�Þ; ð8Þ

where Lð� eY�� Þ � pðeY ���Þ is the likelihood function.

3.3. Assessment of Model Forcing, Structure, and
Measurement Uncertainty
3.3.1. Forcing Uncertainty

[18] Precipitation and air temperature are the primary
forcing variables controlling snow dynamics. Conse-
quently, these variables exert primary control on the simu-
lated values of SWE for a given model [Durand and

Figure 3. (a) Monthly precipitation, (b) temperature, and (c) snow water equivalent (SWE) for the 24
SNOTEL sites presented in Table 2.

W07546 HE ET AL.: MODEL AND DATA FORCING ERROR CORRUPT REGIONALIZATION W07546

6 of 17



Margulis, 2006, 2008]. In recent years a few papers have
appeared in the literature focusing on quantification of pre-
cipitation uncertainty. A common approach is to assume
that precipitation is corrupted by lognormally distributed
multiplicative errors and then estimate the multiplier [e.g.,
Margulis et al., 2002; Kavetski et al., 2006; Ajami et al.,
2007]. However, SNOW17 already applies a snow correc-
tion factor to adjust precipitation input (i.e., equation (1)).
Assigning another multiplier to the precipitation forcing for
the model would be redundant. An alternative approach is to
apply a single multiplier to each individual precipitation
event and estimate these multipliers along with the model
parameters [e.g., Kavetski et al., 2002; Vrugt et al., 2008b].
This method, however, is computationally expensive, espe-
cially for CPU-intensive forward models with numerous pre-
cipitation events. Geostatistical methods are also reported in
the literature in the context of estimating precipitation, with
uncertainty accounted for via conditional simulation [Clark
and Slater, 2006; Gotzinger and Bardossy, 2008]. However,
these methods are not straightforward to implement in prac-
tice and thus are not widely applied.

[19] The current study adopts an alternative, but simpler,
approach to address precipitation uncertainty associated
with SNOW17 simulations. This approach draws inspira-
tion from the multiplier approach discussed above and uses
the parameters SCF and PXTEMP to quantify snowfall
uncertainty. The posterior distribution of these two parame-
ters can be obtained by comparing measured and simulated
SWE, as discussed in section 3.3.2.
3.3.2. Measurement Uncertainty

[20] Measurement uncertainty consists of system error
(resulting from the instruments) and representation error
(resulting from aggregation of spatial variability in meas-
ured variables). Since this study focuses on the point scale,
the impact of aggregation error can be neglected. We also
assume mutually independent and normally distributed
errors of the SWE observations.

[21] We apply a Bayesian approach to estimating param-
eter uncertainty in the presence of measurement uncertainty,
forcing data error, and model structural errors. In the first
trial, we use a standard log likelihood function to estimate
the posterior distribution of the SNOW17 parameters using
the SWE measurements and a uniform prior distribution:

�ð� eY�� Þ ¼ � T
2

lnð2�Þ � T
2

lnð�2Þ � 1
2�2

XT

t¼1

½"tð�Þ�2; ð9Þ

where �ð� eY�� Þ is the log likelihood function and � denotes
the error standard deviation of the SWE measurements.
Equation (9) has been successfully applied in different
fields of study, including rainfall-runoff modeling [Vrugt et
al., 2008a] and hydrogeophysics [Huisman et al., 2010].
3.3.3. Measurement and Model Structural Uncertainty

[22] Despite its wide application, the assumption of
mutually independent errors is not very realistic since the
SWE error residuals in equation (5) generally exhibit sig-
nificant autocorrelation. This serial dependence of the
errors needs to be explicitly considered during model cali-
bration if our goal is to derive meaningful probability
distributions of the SNOW17 parameters and maximize
chances of finding useful regionalization relationships. A

relatively simple and effective method to account for auto-
correlated error residuals is the use of a first-order autore-
gressive model (AR(1)) of the error residuals :

"tð�Þ ¼ �"t�1ð�Þ þ v; t ¼ 1; 2; :::; T ; ð10Þ

where � denotes the first-order correlation coefficient and v
is the remaining (unexplained) error with zero mean and
constant standard deviation �� . We follow Sorooshian and
Dracup [1980] and directly incorporate the AR(1) model
into the log likelihood function (equation (9))

�ð�; �; �� eY�� Þ ¼ � T
2

lnð2�Þ � 1
2

ln
�2

v

1� �2

� �

� T
2
ð1� �2Þ��2

v "1ð�Þ2 �
1
2
��2

v

XT

t¼2

�tð�; �; ��Þ2;

ð11Þ

where

�tð�; �; ��Þ ¼ "tð�Þ � �"t�1ð�Þ; t ¼ 1; 2; :::; T ; ð12Þ

is the AR(1) time series of residuals of SWE with "0 ¼ 0.
This approach at least partially accounts for the effect of
model error, and has been successfully applied in watershed
modeling [Vrugt et al., 2008a]. The variables � and �� of
the AR(1) model are additional parameters to be estimated
along with SNOW17 model parameters. Augmenting � in
equation (11) to include both SCF and PXTEMP further
accounts for errors in snowfall (precipitation) forcing.
3.3.4. Uncertainty Scenarios

[23] Four different uncertainty scenarios (S1–S4), with
increasing complexity, are developed in this study. S1 only
considers uncertainty in the SNOW17 parameters, S2
jointly considers parameter and SWE measurement uncer-
tainty, S3 is similar to S2 but also includes explicit treat-
ment of model forcing data error, and S4 is the most
comprehensive in that it considers model structural errors
in addition to model parameters, SWE measurement, and
the forcing data uncertainty addressed previously in S3. In
fact, S1 is similar to the traditional calibration approach,
which attributes all potential sources of modeling error to
parameter uncertainty. S4 is the more ideal (and realistic)
case and attempts to disentangle the main sources of error
involved in hydrologic modeling. Equation (9) is used as
the likelihood function for both S2 and S3. Equations (6)
and (11) are utilized as the log likelihood function for S1
and S4, respectively. A comprehensive summary of these
four scenarios is given in Table 3.

Table 3. Uncertainty Scenarios Considereda

Scenarios

Uncertainty
Sources

Considered
Likelihood
Function

Number of
Parameters
Considered

S1 U1 Equation (6) 8
S2 U1 þ U2 Equation (9) 9
S3 U1 þ U2 þ U3 Equation (9) 11
S4 U1 þ U2 þ U3 þ U4 Equation (11) 12

aU1 stands for SNOW17 parameters; U2 designates SWE measure-
ments; U3 represents precipitation forcing; U4 denotes model structure.
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3.4. Implementation of DREAM in SNOW17
Modeling

[24] In the absence of closed form analytical solutions of
the posterior pdf of the parameters, we use Markov chain
Monte Carlo simulation with DREAM to summarize model
parameters and predictive uncertainty. The DREAM runs N
(predefined) different Markov chains in parallel. If the state
of a single chain is given by a single d-dimensional vector,
then the N chains define a population �, which corresponds
to an N � d matrix. Jumps in each chain are generated
using a discrete proposal distribution that computes a fixed
multiple of the difference of the states of randomly chosen
pairs of other chains. This d-dimensional difference vector
contains the desired information about the scale and orien-
tation of the proposal distribution. By accepting each jump
with the Metropolis ratio, a Markov chain is obtained
whose stationary distribution is the posterior target distribu-
tion. The proof of this is given by Vrugt et al. [2008a]. The
convergence of a DREAM run is monitored with the R̂ sta-
tistic of Gelman and Rubin [1992], which compares the
variance within and between the chains (R̂k < 1.2, k ¼ 1,
2, . . . , d, designates convergence to a limiting distribution).
The reader is referred to Vrugt et al. [2008a] for a detailed
description of DREAM. Using different case studies, Vrugt
et al. [2009] showed that DREAM achieves good sampling
efficiencies for a large range of problems.

[25] In this study, DREAM is applied to estimate the
posterior distribution of the SNOW17 parameters using
standard settings of the algorithmic variables. Equations
(6), (9), and (11) are applied as the (log) likelihood func-
tions for uncertainty scenarios S1, S2 and S3, and S4,
respectively (Table 3). The numbers of parameters consid-
ered in the four different modeling scenarios (S1–S4) are 8
for S1, 9 (S1 with �) for S2, 11 (S2 with SCF and
PXTEMP) for S3, and 12 (S3 with ��) for S4 (Table 3).
For each DREAM simulation, we use a maximum total of
100,000 model evaluations. Preliminary tests have shown
that this number is sufficient to obtain convergence to a sta-
tionary distribution according to the R̂ statistic.

[26] The uncertainty analysis is presented in terms of (1)
95% parameter uncertainty, (2) marginal distribution and
correlation of posterior parameters, and (3) 95% SWE pre-
diction uncertainty under each uncertainty scenario. In
assessing the 95% parameter uncertainty, the focus is on
parameter uncertainty width and the correlation between
the width and various hydroclimatic characteristics of the
different study sites. Traditional linear correlation coeffi-
cients (which range from �1 to 1, with a higher absolute
value indicating a stronger correlation) are used to quantify
the strength of the relationship. A corresponding p value
statistic is also estimated to determine if the correlation is
statistically significant or not. A value of p < 0.05 indicates
the presence of significant correlation.

3.5. Multiple Linear Regression Model
[27] Multiple linear regression (MLR) has found wide-

spread application in modeling the relationship between a
dependent variable and multiple independent variables.
Recent applications of the MLR include regionalization of
hydrologic model parameters [Campbell and Bates, 2001;
Heuvelmans et al., 2006; Bastola et al., 2008], water level
and streamflow forecasting [Seidou and Ouarda, 2007;

Tiwari and Chatterjee, 2010], water temperature forecasting
[Salamon and Feyen, 2009], and flood frequency analysis at
ungauged sites [Leclerc and Ouarda, 2007]. In this study we
apply the MLR to establish regionalization relationships and
assess the dependence between the DREAM-derived maxi-
mum likelihood values of the SNOW17 parameters (which
exhibit a maximum value of the log likelihood function) and
respective SNOTEL site characteristics

� ¼ A� S þ C; ð13Þ

where � ¼ ½�1; �2; :::; �d � represents the dependent
SNOW17 model parameters (Table 1), S ¼ [s1, s2, . . . , sm]
designates the independent site characteristics considered
(Table 2), m is the total number of characteristics (m ¼ 6 in
this study), A is a regression coefficient matrix with a size
of d � m, and C ¼ [c1, c2, . . . , cm] is a vector with constant
values. MLR is a rather simplistic modeling approach and
is restricted to linear dependencies between input and out-
put variables. However, the main advantage is that the
results are easy to interpret and implement. On the con-
trary, curve-fitting methods such as artificial neural net-
works (ANNs) can provide (nonlinear) mapping between
variables, but their (black box) results are more difficult to
generalize and interpret. Furthermore, despite its concep-
tual simplicity, the resulting error of MLR is often compa-
ratively small compared to more complicated techniques
such as ANNs [Heuvelmans et al., 2006; Bastola et al.,
2008]. We therefore restrict our current analysis to MLR
and will consider ANNs in future work.

4. Results and Discussion
4.1. Uncertainty of Posterior Parameters

[28] Uncertainty of the posterior parameters is investi-
gated in two ways. First, the upper bound and lower bound
of each parameter derived from DREAM under the four sce-
narios are assessed. The assessment specifically focuses on
95% parameter uncertainty and aims to evaluate the impacts
of various error sources in snow modeling on SNOW17 pa-
rameter behavior. Second, the correlation between various
site characteristics and posterior parameter ensemble width
(uncertainty) is evaluated. The overall goal of this evalua-
tion is to identify potential regional relationships between
site hydroclimatic conditions and parameter uncertainty.

[29] When all uncertainty sources are considered (S4),
95% parameter uncertainty tends to cover most of the feasi-
ble parameter range for each parameter at three selected
sites (Figure 4). These three sites, WH (Arizona) from the
Arizona–New Mexico region, BL from Colorado, and LL
(California) from the Pacific Northwest region, represent a
range of contrasting annual snowfall behavior, including
scarce, medium, and high snowfall, respectively (Table 2).
In comparison, under the other three scenarios (S1, S2, and
S3), the 95% parameter uncertainty intervals are signifi-
cantly narrower for all parameters. This contrast illustrates
that model structural uncertainty considerably impacts pa-
rameter uncertainty and dominates the total uncertainty
involved in SNOW17 modeling. Despite the narrow uncer-
tainty interval, the 95% parameter uncertainty derived from
S3 differs from that derived from S1 and S2. This is evident
in terms of both the location of the interval in the feasible
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parameter range (e.g., parameters MFMIN, UADJ,
MBASE, DAYGM, and NMF at site LL; Figure 4a) and
the magnitude of the interval (e.g., parameter NMF at site
LL; Figure 4a). This finding indicates that uncertainty in
snowfall forcing is the secondary factor (after the primary
structural uncertainty) impacting parameter uncertainty.
This impact is most apparent at the wet site (Figure 4a) and
gradually diminishes as the study sites become drier (Fig-
ures 4b and 4c). The 95% parameter uncertainty associated
with scenarios S1 and S2 is almost identical, with only a
few exceptions at the wet site (i.e., parameter TIPM at site
LL; Figure 4a); hence, explicit consideration of Gaussian
noise in the measurements (S2) has marginal impacts on
SNOW17 parameter uncertainty.

[30] As mentioned, parameter uncertainty varies from
site to site under each scenario. This suggests that the phys-
ical site characteristics (topographic and climatic factors)
likely influence parameter uncertainty. To more closely
examine this potential influence, correlations between pos-
terior parameter uncertainty interval (width) and site infor-
mation are evaluated (Figure 5). In general, there are only a
few site-parameter combinations that show fairly signifi-
cant correlation (absolute correlation value greater than
0.33) under each scenario. For S1 (Figure 5a), the uncer-
tainty in PLWHC is negatively correlated to precipitation
(�0.41), maximum SWE (�0.41), and melting period

(�0.37). Recall that PLWHC determines the liquid water
capacity of the snowpack. When the capacity is met, snow-
melt leaves the snowpack. More precipitation and higher
maximum SWE are more likely to lead to higher snowmelt,
given that the liquid water capacity of the snowpack can be
more rapidly filled. PLWHC thus has less (not primary)
impact on the determination of snowpack runoff genera-
tion, leading to smaller variations in its range. This further
indicates that parameter PLWHC is more identifiable in
wetter regions (more precipitation). The negative correla-
tion between PLWHC uncertainty and melting period is
most likely indirect, built up via the correlation between
precipitation and melting period. For S2 (Figure 5b), nega-
tive correlation is also observed between PLWHC uncer-
tainty and the same set of site characteristics as in S1,
indicative of the marginal influence of SWE measurement
uncertainty on the potential relationship between parameter
uncertainty and site characteristics.

[31] PXTEMP uncertainty is negatively related to maxi-
mum SWE, precipitation, and the melting period under S3
(Figure 5c). Recall that PXTEMP (ranging from �2�C to
2�C) distinguishes snowfall from rainfall in precipitation
(precipitation is 100% snowfall if air temperature is less
than PXTEMP; otherwise, precipitation is 100% rainfall).
A stable and high PXTEMP value (i.e., close to the upper
bound of 2�C) would produce potentially higher maximum

Figure 4. Normalized 95% posterior parameter range for sites (a) Leavitt Lake (LL, California), (b)
Brumley (BL, Colorado), and (c) White Horse Lake (WH, Arizona). For each site, the top and bottom
plots show the upper bound and lower bound of posterior parameters for the four uncertainty scenarios,
respectively. The x axis designates SNOW17 parameters ; the y axis denotes normalized parameter val-
ues (normalized by the feasible range of each parameter).
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SWE values because more precipitation would fall as
snow. In this case, PXTEMP exhibits only slight variations
in its range. In comparison, more site–parameter uncer-
tainty combinations show fairly significant correlation for
S4 (Figure 5d). First, DAYGM uncertainty is positively
correlated to air temperature (0.44) and negatively corre-
lated with the snowfall fraction (�0.41). As mentioned,
DAYGM is a constant daily rate of melt at the soil-snow
interface. Higher air temperature leads to more heat
exchange with the ground surface and thus more snowmelt
at the snowpack-ground interface. Consequently, DAYGM
tends to vary in a larger range, generating more melt. The
correlation between DAYGM uncertainty and the snowfall
fraction is likely constructed via the correlation between air
temperature and the snowfall fraction (higher temperature
results in smaller snowfall fraction of precipitation). Sec-
ond, uncertainty in MBASE is positively correlated to ele-
vation (0.45) and is negatively related to melting period
(�0.43). MBASE is a temperature parameter above which
nonrain melt will occur. A longer melting period is typi-
cally characterized by a more stable nonrain melting pro-
cess. In this situation, the variation in MBASE would be
expected to be low. Third, the uncertainty of PXTEMP is
negatively related to air temperature (�0.41). A potential
explanation for this is that the chance of snowfall decreases
with increasing temperature and, hence, at higher tempera-
tures PXTEMP will have less impact on the partitioning
between snowfall and precipitation. Fourth, uncertainty in
MFMIN is positively correlated to air temperature and neg-
atively related to the snowfall fraction. Recall that MFMIN
mostly controls the determination of nonrain melt rate
before 21 March. Higher air temperature likely increases
midwinter melt (before 21 March), causing larger varia-
tions of the value of MFMIN. The correlation between the
uncertainty of MFMIN and the snowfall fraction is most
likely indirect, constructed via air temperature.

[32] Of the four scenarios, S1 and S2 generally have
very similar site–parameter uncertainty correlations (Fig-
ures 5a and 5b). This further illustrates that including Gaus-
sian noise in SWE measurement (S2) has relatively minor
impact on parameter uncertainty. However, when forcing
uncertainty is explicitly considered (S3), the correlation
relationships change significantly (Figure 5c), and overall
correlations are reduced. When model structural errors are
included (S4), the overall correlations increase, with more
pairs of site characteristics and parameter uncertainty dis-
playing fairly strong correlations (Figure 5d). However, it
is not straightforward to characterize these changes in cor-
relations caused by the inclusion of snowfall uncertainty or
model structure uncertainty.

4.2. Distribution and Correlation of Posterior
Parameters

[33] The normalized distributions of the posterior param-
eters at sites LL (California), BL (Colorado), and WH (Ari-
zona) for the four different uncertainty scenarios are
graphically depicted in Figure 6. Normalization with the
prior range is utilized to facilitate comparison of the poste-
rior parameter distributions of the four different scenarios.
In general, three types of marginal distributions are
observed: uniform, normal, and lognormal. It is also evi-
dent that parameter distributions at all three sites in S1 are
very similar to those of S2, indicative of the marginal
impact of Gaussian measurement uncertainty on the distri-
bution of posterior parameters. In addition, posterior pa-
rameters in S3 at the three sites by and large have similar
types of distributions as the parameters in S1 and S2. How-
ever, most of the parameters have different distribution
characteristics (e.g., the skewness and moments). This sug-
gest that including uncertainty in snowfall input tends to
generate similar 95% posterior parameter ranges, but with
different shapes of the respective marginal distributions.

Figure 5. Correlation between the DREAM-derived posterior parameter ranges and selected topo-
graphic and climatic characteristics (x axis) associated with each study site for the SNOW17 model pa-
rameters under uncertainty scenarios (a) S1, (b) S2, (c) S3, and (d) S4. These site characteristics include
elevation (Elev), maximum annual SWE (MaxSWE), mean annual air temperature (Tair) and precipita-
tion (Ppt), snowfall fraction (SFr), and the length of melting period in days (Mprd). Parameters SCF and
PXTEMP are fixed in both S1 and S2 and are thus not included in Figures 5a and 5b.
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Furthermore, except for the parameters controlling snowfall
input (i.e., SCF and PXTEMP) and a melt parameter (i.e.,
MFMAX), posterior parameters in S4 follow a uniform dis-
tribution at the three different sites. Model structural errors
appear to be the main source of error, and parameter values
can be found that extend the entire prior defined ranges that
compensate for this structural deficiency.

[34] Parameters MFMAX, UADJ, and NMF generally
follow the same types of distribution at the three sites under
scenarios S1, S2, and S3 (Figure 6), while the distribution
of MFMIN, MBASE, DAYGM, TIPM, and PLWHC varies
among sites (normal or lognormal) under the three scenar-
ios. Parameters SCF and PXTEMP roughly follow normal
and uniform distributions at the three sites for S3, respec-
tively. For a specific site, for example, site LL (California),
different parameters have different types of distributions
(Figure 6, distributions a1–j1). This highlights the complex
form of the joint distribution of the posterior parameters.

[35] There are relatively few significant correlations
among the posterior parameters under each uncertainty sce-
nario across the 24 study sites (Figure 7). Overall, the per-
centage of parameter pairs with strong correlation (defined
here as the absolute value of correlation coefficient greater
than 0.67) is consistently less than or equal to 20% at all
sites in all four scenarios. S1 and S2 have very similar cor-
relation structure except for at site CS (Colorado). This
may be due to higher uncertainty (lower accuracy) in the

SWE measurement at site CS. Introducing uncertainty in
the measurement forces the model to overtune parameters
and potentially alter interactions between parameters. In
addition, there are consistently no significant correlations
for both S1 and S2 at one third of the study sites (Figure 7).
These sites include the three wettest sites (i.e., HM (Ore-
gon), IL (California), and LL (California)) and another five
sites with medium wetness. It is likely that SNOW17 pa-
rameters perform more independently in wet rather than
extremely dry conditions. The percentage of significant
correlations associated with S3 is apparently different from
that of S1 and S2, suggesting that inclusion of snowfall
uncertainty largely alters parameter interaction relation-
ships. Particularly, at sites TD (Wyoming) and MC (Wash-
ington), 20% of the posterior parameter pairs show
significant correlations. Under S4, the percentage of signifi-
cant correlation is considerably less than S3 at most study
sites. The highest percentage observed is 4.4%. This is
expected since as illustrated in Figure 6, including model
structural error in our analysis leads to much wider parame-
ter ranges. The variance of the posterior parameter is thus
larger, leading to lower correlations among those respective
posterior parameters. The site mean percentages of signifi-
cant correlations for the four scenarios are calculated as
3.87%, 4.91%, 7.78%, and 3.06%, respectively. This indi-
cates that inclusion of uncertainty in SNOW17 model forc-
ing (S3) tends to promote parameter correlation, followed

Figure 6. Normalized posterior marginal parameter distributions at three selected sites: Leavitt Lake
(LL, California, distributions a1 to j1), Brumley (BL, Colorado, distributions a2 to j2), and White Horse
Lake (WH, Arizona, distributions a3 to j3) under four uncertainty scenarios. The x axis denotes scenarios
(S1 to S4 from left to right) ; the y axis designates normalized posterior parameter ranges (from 0 to 1);
the z axis shows the marginal density of posterior parameters.
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by consideration of SWE measurement uncertainty (S2),
parameter uncertainty (S1), and model structural uncer-
tainty (S4). Furthermore, for all four scenarios considered
herein we could not find any apparent relationship between
the percentage of significant correlation and site wetness
(Figure 7). This signifies the difficulty in generalizing the
dependence (if present at all) of posterior parameter inter-
correlation on site climatic characteristics.

4.3. Prediction of Posterior Parameter Sets
[36] Performance of the posterior parameters under each

uncertainty scenario is examined and demonstrated at three
sites, LL (California), BL (Colorado), and WH (Arizona)
(Figure 8). The focus is on 95% SWE prediction uncertainty

derived from the parameters in three years with differing cli-
matology. The selected years correspond to a relatively wet
year, a normal year, and a dry year with respect to snowfall
received at each site. As expected, posterior parameters
from S4 produce wide SWE predictions, which generally
cover all the observed SWE at the three sites. Alternatively,
S1, S2, and S3 have much narrower posterior parameter
bounds (Figure 4) and produce much narrower ensembles of
SWE. Furthermore, the SWE estimates from the four sce-
narios generally mimic the patterns of observed SWE. How-
ever, the model-predicted SWE bound associated with S3
more closely and more appropriately matches the variability
in SWE measurements observed at the three different sites
for the three selected years. In addition, for all three years at

Figure 8. The 95% SWE prediction uncertainty ranges (shaded regions) along with SWE observations
(dots). Results for (a–c) Leavitt Lake (LL, California), (d–f) Brumley (BL, Colorado), and (g–i) White
Horse Lake (WH, Arizona). Examples of model performance for (left) wet, (middle) normal, and (right)
dry years at each site are shown. Note the vertical scale differences at the three sites.

Figure 7. Percentage of posterior parameter pairs with strong correlation (the absolute correlation
value is greater than 0.67) under the four uncertainty scenarios.
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sites LL (California) and BL (Colorado), the melt-out dates
of the SWE predictions from S4 are significantly lagged in
comparison to the SWE observations. This is because the
overestimated peak SWE predictions take much longer to
melt out in S4.

[37] At site LL (California), the SWE prediction of S3
more accurately captures the peak and the overall variations
of SWE measurement in all three years (Figures 8a–8c)
when compared to the uncertainty bounds associated with S1
and S2. In comparison, at the two drier sites, BL (Colorado)
and WH (Arizona), SWE predictions from S1, S2, and S3
are nearly identical (Figures 8d–8i). Apparently, the explicit
consideration of uncertainty in snowfall input significantly
improves SWE estimates at the wet site. However, at the
drier site, this gain in skill is somewhat limited. It is worth
noting that at site WH (Arizona), in the wet year, SWE en-
semble estimates from S1, S2, and S3 miss the observed
peak SWE. The ablation process is also overestimated. These
results illustrate that it is possible to produce SWE ensemble
estimates without satisfactory coverage of the observations.
We posit that this is caused by structural errors in the model
that become dominant when confronted with high temporal
variability of snow accumulation and ablation.

4.4. Regionalization of SNOW17 Parameters
[38] The functional relationships between the DREAM-

derived maximum likelihood parameters and SNOTEL site
characteristics are determined using MLR (equation (13)).
The correlations between parameters derived from these
MLR relationships (regression-based) and maximum likeli-
hood parameters under all four scenarios are calculated
(Table 4). Overall, the correlations are rather weak, with a
mean value of 0.54, 0.52, 0.50, and 0.51 for S1, S2, S3, and
S4, respectively. The low correlations observed here are
similar to the findings of previous studies that focused on a
significantly large number (more than 300) of study sites
[e.g., Merz and Bloschl, 2004; Parajka et al., 2005]. One
potential explanation of these low correlations is that some
of the site characteristics considered in the study (e.g., ele-
vation and melting period) may not be directly and strongly
relevant to snow accumulation and ablation processes.
Nonetheless, there are several cases with significant corre-
lation (Table 4). For instance, under S1 and S2, significant
regionalization relationships are found for parameters

UADJ and DAYGM. For S4, strong correlations are also
observed for MBASE and PXTEMP. Under S3, regression-
based PXTEMP is significantly related to DREAM-derived
PXTEMP (0.74; p value of 0.02).

[39] To closely examine these exceptions and investigate
the impact of various uncertainty configurations on regional-
ization information of SNOW17 parameters, the MLR-
derived relationships corresponding to those four parameters
(UADJ, MBASE, DAYGM, and PXTEMP) under all uncer-
tainty scenarios are presented (Figure 9). Overall, all four pa-
rameters are generally correlated to site air temperature and
the snowfall fraction. This is not surprising, as parameters
UADJ, MBASE, and DAYGM all contribute to the determi-
nation of snowmelt, which is a function of site air tempera-
ture and the amount of snowfall available, while PXTEMP is
a temperature index parameter that controls the partitioning
of snowfall from precipitation. Parameter MBASE is also
shown to be related to the melting period. This correlation
is most likely indirect and induced by the amount of snow-
fall. For those cases associated with significant correlations
(with absolute correlation greater than 0.67; Table 4), the
regionalization relationships of parameters UADJ (Figure
9a) and DAYGM (Figure 9c) are very similar under S1
and S2. Strong regionalization relationships are apparently
insensitive to explicit inclusion of SWE measurement
uncertainty (S2). Parameter MBASE is correlated to the
snowfall fraction and the melting period (Figure 9b). Pa-
rameter PXTEMP is related to different site characteristics
under S3 (i.e., site air temperature and the snowfall frac-
tion) and S4 (with additional melting period; Figure 9d).

[40] For UADJ, the regression function of S4 is evidently
different from its counterpart of S1 and S2, while the func-
tion of S3 only varies slightly from that of S1 and S2. This
indicates that the impact of forcing uncertainty on UADJ is
marginal, whereas the effect of structural uncertainty is sig-
nificant. For DAYGM, the regression equations of S3 and
S4 both vary from their respective counterparts of S1 and
S2, illustrating that uncertainty in model forcing has a
larger impact on DAYGM than on UADJ. The regression
relationships for MBASE differ from each other under four
scenarios. Particularly, the relationship associated with S4
is significantly different from that of the other three scenar-
ios, in terms of both the number of independent site charac-
teristics involved and the coefficients in the regression
equation. This is also the case for parameter PXTEMP
under S3 and S4. These observations highlight the complex
influence of various uncertainty sources on parameter
regionalization information. The influence is site dependent
and parameter dependent and is thus difficult to generalize.

[41] To investigate the potential impact of various uncer-
tainty scenarios on model parameters, scatter plots showing
these four parameters derived from DREAM and the MLR
regression equations at 24 study sites are presented (Figure
9). A clear feature observed for parameters UADJ,
MBASE, and DAYGM is that parameter sets tend to cluster
around the upper and lower bounds of the corresponding
feasible parameter space under S1, S2, and S3. However,
the parameters under S4 spread out across the entire feasi-
ble space. For instance, for DAYGM, the percentage of
DAYGM values that are located within the range from 0.03
to 0.27 (the feasible parameter range for DAYGM is [0–
0.3]; see Table 2) for S1, S2, S3, and S4 are 21%, 25%,

Table 4. Correlation Between DREAM-Derived Maximum Like-
lihood Parameters and Regression-Based Parametersa

Parameters

S1 S2 S3 S4

R p Value R p Value R p Value R p Value

MFMAX 0.37 0.84 0.33 0.91 0.44 0.66 0.36 0.85
MFMIN 0.57 0.29 0.56 0.30 0.53 0.40 0.44 0.68
UADJ 0.74 0.02 0.74 0.02 0.52 0.41 0.36 0.85

MBASE 0.66 0.09 0.66 0.10 0.50 0.49 0.72 0.03
DAYGM 0.72 0.03 0.73 0.03 0.57 0.29 0.64 0.12

NMF 0.45 0.65 0.41 0.76 0.36 0.86 0.57 0.29
TIPM 0.45 0.65 0.41 0.76 0.47 0.58 0.39 0.79

PLWHC 0.34 0.89 0.33 0.90 0.26 0.97 0.32 0.92
SCF - - - - 0.64 0.13 0.57 0.28

PXTEMP - - - - 0.74 0.02 0.72 0.03

aThe corresponding p values are also tabulated. The p values indicating
significant correlation relationships are in bold; the associated correlation
coefficient values are in italics.
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13%, and 88%, respectively. PXTEMP in S3 also tends to
cluster at the upper bound of the parameter range (Figure
9d), compared with that observed in S4.

5. Conclusions
[42] Regionalizing hydrologic model parameters holds

great potential for improved hydrologic predictions in unga-
uged areas, particularly in light of a warming climate and
the fact that the current hydrologic observational network
across the United States is sparse. However, the presence of
uncertainty in model forcing, parameters, structure, and
measurements of model output (e.g., SWE) hinders the
attempt to construct robust regionalization relationships
for model parameters [Wagener and Wheater, 2006; Yadav
et al., 2007; Bastola et al., 2008; Buytaert and Beven,
2009; Kling and Gupta, 2009]. The current study overviews
the development of a comprehensive uncertainty analysis
that can provide insight on the regionalization of hydrologic
model parameters. The key findings of our study are sum-
marized as follows:

[43] 1. The inclusion of uncertainty in SWE measure-
ments (S2) results in little change in the 95% parameter
uncertainty range, the marginal parameter distribution, the
correlation among posterior parameters, the 95% SWE pre-
diction uncertainty range, and the regionalization relation-
ships of SNOW17 parameters. This information is almost
identical to that derived when only parameter uncertainty
(S1) is considered.

[44] 2. In contrast, the inclusion of uncertainty in snow-
fall forcing (S3) has a significant impact on the derived

parameter ranges and regionalization relationships. First, the
posterior parameter uncertainty range changes in terms of
both magnitude and location in the feasible parameter range.
The wetter the sites, the more evident this change generally
is. Second, the marginal distributions of most posterior pa-
rameters show differences in regard to either the type of dis-
tribution or the distribution characteristics (moments).
Third, correlations among posterior parameters are dramati-
cally different, with overall correlation becoming weaker
with the addition of uncertainty in snowfall. Under S3, the
SWE estimates at the wet sites studied are considerably
improved compared to those estimated under cases S1 and
S2. The regionalization relationships determined are also
very different. For instance, parameter DAYGM is nega-
tively correlated to site air temperature and the snowfall
fraction, which is the opposite in the cases of S1 and S2.

[45] 3. Despite the evident consequences of uncertainty in
snowfall forcing, model structural error (S4) tends to domi-
nate. Explicit treatment of this uncertainty produces signifi-
cantly wider parameter bounds, leading to wider ensembles
of SWE predictions. In addition, when structural uncertainty
is explicitly considered, there is no apparent marginal distri-
bution of most posterior parameters at the three sites that
were used for demonstration (uniform distributions are
observed). The correlation among the posterior parameter
samples is also weaker than the other three uncertainty sce-
narios at all the study sites. However, inclusion of model
structural uncertainty does strengthen the overall correlation
between parameter uncertainty and site characteristics. Fur-
thermore, the regionalization relationships are dramatically

Figure 9. Scatterplot of DREAM-derived maximum likelihood parameter values (x axis) versus parame-
ters derived from regression analysis (y axis) under various uncertainty scenarios for parameters (a) UADJ,
(b) MBASE, (c) DAYGM, and (d) PXTEMP. Regression relationships are also shown. The site character-
istics involved include mean annual air temperature (Tair), snowfall fraction (SFr), and the length of melt-
ing period in days (MPrd). PXTEMP is fixed in both S1 and S2 and thus is not included in Figure 9d.
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different from those obtained in S1, S2, and S3. MBASE
and PXTEMP are related to different site characteristics
compared to their regionalization relationship in other sce-
narios. The maximum likelihood parameters and corre-
sponding regression-based parameters spread out across the
full feasible parameter space, while those parameters in S1,
S2, and S3 tend to cluster around the upper and lower
bounds of the feasible parameter space. As addressed in sec-
tion 3.3.4, considering model structural uncertainty leads to
more realistic estimates of model parameters. We advocate
that the posterior parameters and corresponding SWE pre-
dictions as well as the regionalization information obtained
under the most complex scenario (S4) are more realistic
(and robust) than cases when structural uncertainty is not
considered (i.e., S1, S2, and S3).

[46] While uncertainties in model forcing and model
structure are shown to significantly alter regionalization
relationships, it is difficult to rigorously characterize these
changes. This may be due to several reasons. First, the spe-
cific site characteristics examined in this study may not be
directly (or singularly) connected to the snow accumulation
and ablation process [Merz and Bloschl, 2004; Oudin et al.,
2008]. Second, the relationships between SNOW17 parame-
ters and site characteristics may be nonlinear, while the
regression model applied in the current study assumes line-
arity. Third, a larger sample size may be needed [Young,
2006; Oudin et al., 2008]. In our ongoing work, which aims
to develop and assess more robust regionalization schemes
for SNOW17 parameters, we have started to investigate
additional site characteristics (e.g., mean number of days
when air temperature is close to 0�C) that may more closely
correlate to the snow accumulation and ablation process.
We are also investigating the use of nonlinear regression
techniques (i.e., ANNs) to maximize the chance of finding
useful relationships between model parameters and site
characteristics. The source code of DREAM can be obtained
from the last author upon request.
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