ANNUAL MEETING

Coastal Coupling Community of Practice May 23, 2023

Access to Meeting Materials WiFi: Coastal Coupling Password: co@\$t2C0@\$T!

Coastal Coupling

MARK OSLER • MAY 23, 2023 Senior Advisor for Coastal Inundation and Resilience, NOAA

Advancing predictive capabilities

By enabling coastal coupling

As a community of practice

Thank you!

FACILITATED DISCUSSION

• COASTAL COUPLING COMMUNITY OF PRACTICE

DORI STIEFEL, PhD

Coastal Coupling Community of Practice Annual Meeting May 23, 2023 Seasonal to Multidecadal Climate Variability, Predictability and Change

Thomas L. Delworth, Division Lead, SD Group Presented by: Matthew Harrison, Oceans&Cryosphere, NOAA Geophysical Fluid Dynamics Laboratory

Coastal Coupling Community of Practice Meeting May 23, 2023

Improve understanding of phenomena on seasonal to multidecadal time scales leading to ...

development of leading edge computer models and prediction/projection systems resulting in ... improved "seamless" predictions and projections.

- Predictions: How tropical Pacific ocean temperature (El Nino) will evolve in coming months
- Projections: How the statistics of Pacific ocean temperatures (El Nino) will change in response to increasing greenhouse gases

Coastal Coupling Community of Practice, May 23, 2023

GFDL SPEAR

Seamless system for Predictions and EArth system Research

MOM6 ocean AM4 atmosphe LM4 land SIS2 sea ice

Coastal

AM4 atmosphere _M4 land SIS2 sea ice		Atmos resolution	Ocean resolution	Computational Cost (CPU hours per year on GAEA)	CPU cost for 10,000 model years)
	SPEAR_LO	100 km	100 km	1,600	20 million	
	SPEAR_MED	50 km	100 km	6,400	64 million	*
	SPEAR_HI	25 km	100 km	40,000	400 million	
	SPEAR_HI_25	25 km	25 km	56,300	563 million	
elworth et al., 2020		Where do Typical nu cycle, or la	es 10,000 years umber of simula arge ensemble	s come from? tion years for model of climate change si	development, ret mulations	forecast
Coastal Cou	pling Comr	nunity c	of Practic	e, May 23,	2023	

Real-time experimental seasonal predictions (North American Multimodel Ensemble, NMME)

- informs NOAA seasonal outlook
- informs National Hurricane Center seasonal hurricane outlook
- experimental sea level prediction

Decadal predictions (World Meteorological Organization, coordinated project through UKMO)

Predictability research from subseasonal to decadal (from MJO to Southern Ocean predictability)

This capability is being transitioned to NWS through the Weather Program Office

- Large ensembles with SPEAR to project changes in climate and extremes.
- 30 members running from 1921 to 2100 means 180 yrs * 30 ens members = 5400 model years
- Rich data sets for probing climate chang
- Data publicly available (google search for SPEAR Large Ensembles)

Coastal Coupling Community of Practice, May 23, 2023

Down-scaling with the MOM6 ocean model

- 1/12° horizontal resolution regional model of the Northwest Atlantic, with ocean (MOM6) and sea ice (SIS2)
- optional biogeochemistry (COBALT) components
- Currently running:
 - Reanalysis-forced hindcast simulation with BGC (submitted to GMD)
 - 1-year seasonal forecasts forced by GFDL SPEAR global seasonal forecasts
 - 25+ year retrospective forecast evaluation
- Additional longer-term forecasts and projections in pre-

Coastal Coupling Community of Practice, May 23, 2023

THANK YOU

MATTHEW HARRISON

Physical Scientist, Geophysical Fluid Dynamics Laboratory NOAA matthew.harrison@noaa.gov

Coastal Storm Modeling System

JASON CALDWELL

Research Hydraulic Engineer U.S. Army Corps of Engineers raymond.j.caldwell@usace.army.mil

Coastal Coupling Community of Practice Annual Meeting May 23, 2023

USACE Perspectives on Compound Flooding

- There is a need for reliable, accurate and validated (translatable) tools and best practice/guidance that can be applied on projects - must be able to first quickly assess if (and to what extent) Compound Flooding is a consideration, and ONLY then, invest in analysis
- There is a need for both loose and fully coupled (two-way dynamical coupling) coastal surge/wave and inland rainfall-induced flow models.
- Full coupling may only be needed in very specific geographic and physical settings and for rapid forecasting needs. (Present one-way coupled models may be good enough from an engineering perspective)
- There is a need to extend present Compound Flooding considerations to antecedent conditions as well as future conditions (e.g. climate change)
- Groundwater interactions are also required for certain areas and projects
- A National Coastal/Inland Flood Hazards System provides readily available standardized national level data & statistics

Combined Joint Probability of Coastal Storm Hazards (JPM-OS + CSTORM):

Forcing

- Tropical cyclones
- Extratropical cyclones
- Other storm types/events *
- Rainfall *

Response

- Water level (storm surge, astronomical tide, SLC)
- Runoff *
- Currents
- Wave height, peak period, direction
- Wind speed, direction
- Precipitation *

High-resolution, highly skilled numerical models in a tightly integrated, coupled, modeling system with Plug-n-Play design for expandable and upgradeable workflows.

660 Synthetic Storms

Hurricane Harvey (CF Modeling Example)

- Images show impacts to maximum total water levels including river flows in Clear Creek + Dickinson Bayou areas of Texas
- ADCIRC (coastal surge) + • HEC-RAS/HMS (river flows)
- Comparison of AEP-driven flows and time varying flows

-95.2 -95.15 -95.1 -95.05 -95 -94.95 -94.9 -94.85 -94.8 Longitude (deg)

-95 -94.95 -94.9 -94.85 -94.8 Longitude (deg) Maximum Water Surface Elevation Hurr. Harvey :: 100yr ARI Flows

(NAVD88)

-95 -94.95

Longitude (deg)

-94.9 -94.85 -94.8

-95.2 -95.15 -95.1 -95.05

THANK YOU

JASON CALDWELL Research Hydraulic Engineer U.S. Army Corps of Engineers raymond.j.caldwell@usace.army.mil

Advancing Global STOFS 2D⁺: NOAA's *Fast* Integrated Multi-Scale Multi-Process Operational Water Level Model

Joannes Westerink¹, Maria Teresa Contreras-Vargas¹, Coleman Blakely¹, Al Cerrone¹, Guoming Ling¹, Dam Wirasaet¹, Shintaro Bunya², Zach Cobell³, Juan Gonzales⁴, William Pringle⁵, Kendra Dresback⁶, Chris Szpilka⁶, Randy Kolar⁶, Ed Myers⁷, Greg Seroka⁷, Saeed Moghimi⁷, Liujuan Tang⁷, Yuji Funakoshi⁷

¹University of Notre Dame, ²University of North Carolina at Chapel Hill, ³Water Institute of the Gulf, ⁴Caricoos, ⁵Argonne National Laboratory, ⁶University of Oklahoma at Norman, ⁷NOAA NOS/OCS Silver Spring MD

Coastal Coupling Community of Practice Annual Meeting

May 23, 2023

NOAA/NOS' Office of Coast Survey

Global STOFS 2D: v1.0 currently in operation

At NCEP https://polar.ncep.noaa.gov/estofs/glo.htm At Notre Dame https://dylnwood.github.io/GESTOFS-develop/

GFS-FV3 Global Atmospheric Model

ADCIRC Circulation

CICE Global Sea Ice Model

- Mesh resolution varies between 25 km to 2.5 km globally and 80 to 120 m in *all* U.S. coastal waters and floodplains
- Most accurate published global model with an M₂ tide deep water error of 1.95 cm
- U.S. East/Gulf of Mexico coast M₂ tide errors R² = 0.9848, average absolute error = 2.5 cm, and a normalized RMS error = 0.089
- Runs *fast* in 2.4 wall clock minutes per day of simulation on 2400 TACC Frontera cores

Global STOFS 2D⁺: Thermohaline engine transitioning to operations

Coupling of **ADCIRC**, **GFS-FV3**, **CICE** and **G-RTOFS/HYCOM using downscaling** over a unified domain on heterogeneous meshes/grids

- $\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + f\boldsymbol{k} \times \boldsymbol{u} = -\nabla \left[\frac{p_s}{\rho_0} + g(\zeta \zeta_{EQ} \zeta_{SAL})\right] \\ + \frac{\nabla M}{H} \frac{\nabla D}{H} \frac{\nabla B}{H} + \frac{\tau_s}{\rho_0 H} \frac{\tau_b}{\rho_0 H} \mathcal{F}_{IT}$
- Baroclinic pressure gradient (BPG):

Global STOFS 2D⁺ with NWM coupling and sub-grid scale floodplain

ADCIRC with ice, BPG, NWM forcing Floodplain: Sub-grid scale processes

GFS-FV3 Global Atmospheric Model

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Coupling of **ADCIRC** and **NWM** at external and internal network connections with **rainfall**

Development of sub-grid scale (SGS) methods across the coastal floodplain

Rebeguidocates (SGS) bratth or ponisive 56rm mesh anea32000 exclastoreth an & features

Thank you from the Global STOFS 2D⁺ team

For daily forecasts with prior 5 day nowcasts comparisons to data: <u>https://dylnwood.github.io/GESTOFS-develop/</u> For references please see <u>coast.nd.edu</u> or contact us at jjw@nd.edu

NOAA/NOS' Office of Coast Survey

THANK YOU

JOANNES WESTERINK Joseph and Nona Ahearn Professor in Computational Science and Engineering, University of Notre Dame joannes.westerink.1@nd.edu

Piloting a Model Visualization System at the Northeastern Regional Association of Coastal Ocean Observing System Based on Tools from the Pangeo Community Platform for Big Data Geoscience

TOM SHYKA

Product and Engagement Manager Northeastern Regional Association of Coastal Ocean Observing Systems tom@neracoos.org

Coastal Coupling Community of Practice Annual Meeting May 23, 2023

Piloting a Model Visualization System Based on Tools from the Pangeo Community

Scituate, MA (up to 10 m) Boston Harbor, MA (up to 10 m)

Hampton, NH (up to 10 m)

Saco Bay (up to 10 m)

Model Forecast Visualization Process

THANK YOU

TOM SHYKA Product and Engagement Manager Northeastern Regional Association of Coastal Ocean Observing Systems tom@neracoos.org

TRACY FANARA

NOS Coastal Modeling Portfolio Manager tracy.fanara@noaa.gov

Coastal Coupling Community of Practice Annual Meeting May 23, 2023
NOS Modeling

NORR OF COMPANY

National Ocean Service

Navigation (and more): NOAA Operational Forecast Systems (OFS):

Workhorse for NOS models & model uses

Safe & efficient navigation

- Water levels for under-keel clearance
- Currents for right-of-way, maneuverability
- Precision Marine Navigation S100 Standards

Coastal Resilience

• Storm surge and inundation

Emergency response

- Supports trajectory models for Hazmat spills (OR&R)
- Search & Rescue
- Homeland Security

Ecological applications

Hypoxia, HABs, pathogens, etc.

It's Up To Us To Protect Lives And Livelihoods Of Those On Our Coast

Community Modeling

A gathering of government, academic, and private industry to enhance collaboration and make the NOAA and NOS Modeling Vision, along with the visions of external partners, a reality

Final Report

92 Cross line office NOAA scientists, 96 from academia, over 10 from the private sector and representation from each IOOS Regional Association

NOS Modeling Strategy

1. Address User Needs through Partnerships (community engagement)

 Community Modeling Approach (crowd sourcing solutions)
Issue National Ocean Service Predictions (reliable coastal and ocean modeling information) Bipartisan Infrastructure Law and Disaster Recovery

<u>BIL</u>

- Deliver 3D regional/national coastal models (including Great Lakes) and develop shared cyberinfrastructure
- To understand compound flooding and predict impacts, through Coupled NextGen National Water Model and 3-D coastal models

prosed SECOFS domain. The rough outlines of the existing NECOFS and so shown. The new SECOFS will mostly cover the gaps between NECOFS ut will also cover Caribbean. The final coverage of SECOFS will be ine the project in consultation with OCS. Co-OPS and IOOS.

Figure 1: Domains covered by existing models run by the ECCOFS team. Left: Surface current forecast from the Coupled Northwest Atlantic Prediction System (CNAPS). Right: Domain and bathymetry of the Rutgers West Atlantic (WATL) model. probabilistic storm surge forecast.

Coastal and Ocean Modeling Testbed (COMT)

Funds transition oriented projects in the extramural community (new NOFO coming in late 2023)

Mission: To use applied research and development to accelerate the transition of scientific and technical advances from the coastal ocean modeling research community to improved operational ocean products and services (i.e. via research to operations and also operations to research).

Thank you & Questions?

• COASTAL COUPLING COMMUNITY OF PRACTICE

John L. Wilkin

Professor, Department of Marine and Coastal Sciences Rutgers, The State University of New Jersey jwilkin@rutgers.edu

Community Modeling Insights and Opportunities

How Community Modeling Can Support NOAA's Ocean and Coastal Missions

Coastal Coupling Community of Practice Annual Meeting, May 23, 2023

We have made tremendous progress

The ROMS community has championed open collaboration since 2004

We have made tremendous progress

- Community consensus on R&D priorities
- Embrace of open science
 - source code, data, FAIR principles
- Collaborative development environments • GitHub, user forums ...
- Advanced integration frameworks JEDI*, ESMF*/NUOPC and UFS* 0

			System
Review The future of coastal and es	Review		John Wilkin, Leslie Ros Ruoying He, Patrick H Quintrell, David Schwa
Oliver B. Fringer ^{a,*} , Clint N. Daws	on ^b , Ruoying He ^c , David K. Ralston ^d , Y. Joseph Zhang ^e	Check for updates	

Ocean Modelling 143 (2019) 101458 Contents lists available at ScienceDirec

Advancing Modeling Capabilities

for the Coastal Ocear

Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing Svstem

John Wilkin, Leslie Rosenfeld, Arthur Allen, Rebecca Baltes, Antonio Baptista, Ruoying He, Patrick Hogan, Alexander Kurapov, Avichal Mehra, Josie **Ouintrell, David Schwab, Richard Signell & Jane Smith**

We have made tremendous progress

What next?

- Coupled/integrated Earth System and Biosphere Modeling
 - our Communities of Practise still lack a common lexicon, appreciation of peer science needs, and interoperable tool-set
 - hydrology, waves, littoral zone, ocean, atmosphere, BGC/ecosystems
- Facilitating external research should be an Operational deliverable ...
 - open parallel operational environments / sandbox for experimentation
- Capacity development
 - write students and postdocs into every proposal
 - rescue the best undergrads from particle physics
 - focused workshops / training / test-beds / doing not talking

COASTAL COUPLING COMMUNITY OF PRACTICE

THANK YOU

John L. Wilkin

Professor, Department of Marine and Coastal Sciences Rutgers, The State University of New Jersey jwilkin@rutgers.edu

Operational Forecast Systems

PAT BURKE • MAY 23, 2023 Oceanographic Division Chief, NOAA/NOS/CO-OPS

Hudson Labrador Bay Basin Gulf of Labrador Alaska Sea ERICA 8238 1152 ant North -American NORTH Basin 5529 PACIFIC

129

7333

6938

OCEAN

6766

6377

Operational Forecast Systems

6721

6038

Why OFS?

HANJIN

Marine Navigation

AVERATIN

-

Emergency Response

Great Lakes Ice Forecasts

Environmental Management

Currents

Waves

Surface Winds

Water

Levels

Coastal Ocean Modeling Framework

Water

Temperature

Challenges & Emerging Requirements

Next for OFS?

9

INN

1 m

Thank you! https://tidesandcurrents.noaa.gov/forecast_info.html

COASTAL COUPLING COMMUNITY OF PRACTICE

KELLY KNEE

Executive Director of Ocean Science at RPS North America kelly.knee@rpsgroup.com

Coastal Coupling Community of Practice Annual Meeting May 23, 2023

OCEANSMAP: A DATA ECOSYSTEM FOR SUPPORTING COLLABORATION AND DECISION MAKING

- Collaboration
- Common Operational Picture
- Oil Spill Planning & Response
- Search and Rescue
- Offshore Operations
- Mission Planning
- Protected Species Observation
- Navigation
- PFAS
- Flood Hazard Mitigation & Response
- Observation system management
- Public/Private/Hybrid

WHAT IS OCEANSMAP?

OceansMap unlocks the power of data by translating data into insight and enabling users to make informed decisions.

It is a data ecosystem; behind the UI a collection of harvesters, processors, and services brings together environmental data and forecasts from disparate sources, applies community standards, and ensures availability for visualization, analysis and decision support

Data management, maritime planning, water quality, operational response - regardless of your application, OceansMap makes met-ocean data easy.

OCEANSMAP Underlying Principals

- storage
- discoverability
- accessibility
- compliance
- visualization

IOOS DATA MANAGEMENT & CYBERINFRASTRUCTURE

a robust, services-oriented system that includes tools to aggregate, quality-control, and monitor data from a variety of observational and numerical model assets, including:

- in situ and remotely-sensed observation and model data
- centralized, standards-based data access services
- approved common data formats such as NetCDF
- adherence to the IOOS metadata requirements
- real-time quality control (QARTOD)
- cloud infrastructure for storing data, hosting services and webapps
- IOOS catalog registration
- Archiving
- Continuity of operations, infrastructure O&M, collaboration

COLLABORATION WITH NOS / CO-OPS:

DATA INTEGRATION AND WEB-BASED MODEL VALIDATION TOOL FOR NOAA CO-OPS

Goals:

- **1. Facilitate decision making** integrate real-time observations and model forecasts
- 2. **Provide consistency** data access and presentation
- **3. Improve communication** validation & uncertainty

Audience:

- 1. CO-OPS navigation customers
- 2. Offshore wind energy industry
- 3. Regional WFOs and their customers

COLLABORATION WITH NOS / CO-OPS: DATA INTEGRATION AND WEB-BASED MODEL VALIDATION TOOL FOR NOAA CO-OPS

Products to be Transitioned

- 1. Operational TDS
- 2. OceansMap

Status

- 1. Deployment testing ongoing
- 2. Final stakeholder engagement

CO-OPS OCEANSMAP TOOLS: VALIDATE

CO-OPS OCEANSMAP TOOLS: MULTI-VARIATE ANALYSIS

CO-OPS OCEANSMAP TOOLS: COMPARE

COASTAL COUPLING COMMUNITY OF PRACTICE

THANK YOU

KELLY KNEE

Executive Director of Ocean Science at RPS North America kelly.knee@rpsgroup.com

COASTAL COUPLING COMMUNITY OF PRACTICE

LUNCH BREAK

We will resume at 1:30 PM CT

NWM version 3.0 and NextGen Dr. Trey Flowers Director, Analysis and Prediction Division

National Water Model Overview

- The NWM revolutionizes how hydrologic guidance is developed and delivered, providing both complementary and first-time coverage and outputs
- Most recent NWM upgrade, v2.1 in April 2021, v3.0 planned for July/August 2023
- Skill improvement version over version

NWM: Filling the Forecast Coverage Gap

- Population > 3 million in this region, much of which is more than 30 miles away from the nearest RFC forecast point (circles at right)
- NWM complements existing RFC forecasts by providing guidance over a very dense set of stream reaches (blue at right)

Coverage example over the Carolinas

Enhancing the NWM: Development Trajectory

Foundation: 2016-2018

v.1.0/

1.1/1.2

- First-ever NOAA water forecast model running on operational supercomputer
- 2.7 million reaches

Upgrades: 2019-2021

v.2.0/

2.1

- Hawaii, medium range ens., physics upgrades, improved modularity, MPE ingest
- Expansion to PR and Great Lakes
- Reservoir modules, forcing upgrades, open-loop, and improved Hawaii forcing

Coming Soon: 2023

v.3.0

- Total water level
- Expansion to Alaska
- NBM forcing
- Improved runoff module, parameters, calibration and hydrofabric upgrades

Future Upgrade: 2025

v.4.0

 Use of NextGen Framework heterogeneous modeling, improved modularity, expanded community development

1,000

NWM v3.0: New Alaska Domain

Overarching Goal: Provide complementary and first-time hydrologic guidance for Alaska's Cook Inlet, Copper River Basin and Prince William Sound Regions

NWM Alaska Summary

- Close coordination with Alaska Pacific RFC
 - Assimilation of APRFC glacial dam lake (GDL) outflow forecasts
 - Customized model and forcing configurations
- Guidance for 390k stream reaches complements RFC AHPS sites
- Total water level guidance for AK coast in Version 4.0 of the model

Dense network of NWM hydrologic guidance

NWM v3.0: New Forcing (National Blend of Models)

- NWM v3.0 features first-time NWM use of the NBM as forcing
- Implemented for both CONUS and Alaska domains

- Added for CONUS via new 10-day CONUS forecast configuration, complementing existing GFS-forced configuration
- Use of NBM enhances coordination with NWS Centers and Field offices

NWM v3.0: New Total Water Level Forecasting Capability

- With version 3.0, NWM TWL guidance complements existing regional forecasts over *CONUS-wide*, *Hawaii*, *and PR/VI domains*
- This new freshwater-estuary-ocean coupling leverages the NWM, SCHISM, STOFS & PSURGE, executes in both Analysis and Forecast modes.
- P-Surge 10% exceedance forecast used as boundary forcing, aligning with NHC practices
- <u>Ongoing Field coordination</u> has been extremely valuable (SHEF data format, transfer, ingest)
 End Users

NWM v3.0 Operational Cycling on WCOSS

Lookback Range 3-28 hrs

Including open loop (non-DA) members

*Coastal Total Water Level

30 Day Ensemble Forecast

NWM v3.0 Total Water Level Domain Coverage

TWL output is masked at depths greater than 5 meters offshore, extends to 10 meter topographic height inland

Puerto Rico/Virgin Islands (PR/VI)

NWM Coastal Retrospective Evaluation: Storm Event Time Series

NWM Coastal Retrospective Evaluation: Storm Event Time Series

How did we do?

NWM v3.0 Retrospective Improvement: CONUS

NWM v3.0 Streamflow KGE at USGS Gauges (WY 2014-2016, AORC Forcing)

	Mean Peak Bias (%)	Mean Flow (CMS))
)	(0,20]	0	0
)	(20,40]	\bigcirc	50
)	(40,60]	\bigcirc	100
)	(60,80]	\bigcirc	150
	(80,100]	\bigcirc	
	(100,Inf]	\bigcirc	200

- Streamflow KGE continues to improve at USGS gauged basins
- Simulation is for WY2014-2016 (validation period) and uses AORC forcing data
- No assimilation of streamflow or reservoir observations

NWM v3.0 Retrospective Improvement: CONUS

V2.0 Distribution of Peak Bias (%)

Mean

Flow

(CMS)

0

50

100

150

200

NWM v3.0 Streamflow Peak Bias (%) at USGS Gauges (WY 2014-2016, AORC Forcing)

- Streamflow peak bias (%) continues to improve at USGS gauged basins
- Simulation is for WY2014-2016 (validation period) and uses AORC forcing data
- No assimilation of streamflow or reservoir observations

Known Geographic Variability in Performance

There has to be a better way

A Major Time Investment

Forcing Data: More Formats, More Problems

- Traditional workflow: different models, different files/formats/columns/etc.
- Large, upfront time investment

Model X

950	1.0		
. (0000000	.0000619	.0000328
. (0000000	.0000647	.0000325
.(0010000	.0000619	.0000330
. (0010000	.0000560	.0000333
. (0010000	.0000457	.0000348
. (0005000	.0000323	.0000356
. (0005000	.0000156	.0000356
. (0000000	.0000000	.0000356
. (0005000	.0000000	.0000351

Model Y

UTC date/time	windspeed	wind dir	temperature	humidity	pressure	shortwave	longwave	precipitation
yyyy mm dd hh mi	m s{-1}	degrees	K	%	hPa	W m{-2}	W m{-2}	kg m{-2} s{-1}
1998 01 01 06 30 1998 01 01 07 00 1998 01 01 07 30 1998 01 01 08 00 1998 01 01 08 30	5.6300001144 6.7399997711 6.2600002289 6.0500001907 5.7600002289	178.0000000000 178.0000000000 180.0000000000 176.0000000000 192.0000000000	263.9499816895 264.7500000000 265.1499938965 265.4499816895 265.4499816895	86.0999984741 84.6999969482 84.6999969482 84.4000015259 83.0000000000	1002.0000000000 1001.0000000000 1001.00000000	0.000000000 0.000000000 0.000000000 0.000000	281.000000000 282.0000000000 241.000000000 216.000000000 215.0000000000	0.000000000 0.0000000000 0.000000000 0.000000

Model A

time,APCP_surface,DLWRF_surface,DSWRF_surface,PRES_surface,SPFH_2maboveground,TMP_2maboveground,UGRD_10maboveground,VGRD_10maboveground,precip_rate 2015-12-01 00:00:00,0.0,361.20001220703125,0.0,100530.0,0.010499999858438969,287.5,-2.6000001430511475,0.0,0.0 2015-12-01 01:00:00,0.0,361.20001220703125,0.0,100610.0,0.009800000116229057,287.3000183105469,-2.700000047683716,-0.30000001192092896,0.0 2015-12-01 02:00:00,0.0,361.20001220703125,0.0,100600.0,0.009999999442696571,286.6000061035156,-2.799999952316284,-0.6000000238418579,0.0 2015-12-01 03:00:00,0.0,357.6000061035156,0.0,100570.0,0.008700000122189522,285.5,-2.9000000953674316,-0.9000000357627869,0.0 2015-12-01 04:00:00,0.0,357.6000061035156,0.0,100590.0,0.00839999970048666,284.3000183105469,-2.6000001430511475,-0.30000001192092896,0.0

Simplify the process

A few advantages of this approach

- Language- and model-agnostic
- Standard forcing and geospatial formats
- Easy model coupling via the Basic Model Interface
- Saves model setup time
- Lets you run different model and module sets (formulations) in a single instance

Quick component overview: framework

The **framework** is the heart of NextGen

- Controls model runtime and execution
- Reads input data and passes it to the models
- Couples models via Basic Model Interface functions
- Writes output data from models

Quick component overview: formulations

Formulations are the coupled model sets running in a given location

- Surface processes (Noah-OWP-Modular, PET, Snow-17)
- Subsurface processes (CFE, TOPMODEL, Sac-SMA, LGAR)
- Machine learning (LSTM)
- Initialized by the model engine using configuration files generated from the hydrofabric

Quick component overview: hydrofabric

The **hydrofabric** defines the model domain, network connectivity, and basin attributes

- Created using fully open-source tools
- Derives data from publicly available sources using multi-dataset catalog
- <u>https://noaa-owp.github.io/hydrofabric/index.html</u>

Quick component overview: calibration

ngen_cal is a model-agnostic calibration package

- User can choose models, domains, time periods, default values, objective functions, and algorithms
- Relies on novel application of BMI functions to set parameters
- Compares output to USGS streamflow observations

A Heterogeneous Modeling Approach

- NextGen pieces we need
 - Hydrofabric
 - Formulations
 - Configuration files

• Run experiments with NextGen

- A single model formulation
- A formulation built from 2 modules
- Multiple formulations
- Advantages
 - Save time: from months to minutes
 - Reuse as much as possible (e.g. forcings and hydrofabric)
 - Reproducible, open-source workflow

Hydrologic Modeling Using NextGen - LSTM

CAMELS Basin 02300700

Module Configuration

Hydrologic Modeling Using NextGen - LSTM Output

Hydrologic Modeling Using NextGen - Changing Formulations from LSTM to CFE

Hydrologic Modeling using NextGen - CFE Example

CAMELS Basin 02300700

Module Configuration

Hydrologic Modeling using NextGen - CFE Output

TIDAR
Hydrologic Modeling Using NextGen - NoahOWP + CFE Output

Hydrologic Modeling Using NextGen - Right Tool in the Right Place for the Right Reason

Hydrologic Modeling Using NextGen - Heterogeneous Formulation Output

NORR

With Great Power Comes Great Responsibility

Let's consider for a moment some of what is required to use NextGen:

- Ensure the right forcing data is available
- Build the expected BMI module libraries and save them to the expected directories
- Build the NextGen executable and install/save to the expected directory
- Write a detailed realization configuration file in a text editor
- Ensure BMI module configs, NextGen realization config, forcings, and hydrofabric files are in the right directories for execution
- Use the correct syntax for the command to start execution

All of this can be done.

And to perform calibration of NextGen using our ngen-cal utility:

- Everything above for NextGen itself
- Recall the specific algorithms and options that are supported
- Write a detailed calibration configuration file by hand in a text editor

And to evaluate formulation performance:

- Everything above for NextGen and calibration
- Specify objective functions, optimization algorithms, evaluation metrics, time periods, etc.
- Specify observation datasets
- Execute evaluation and display results

But can we make things easier/faster?

Easier Execution via NextGen Tools

Calibration with NextGen Tools

Evaluation with NextGen Tools

Evaluation with NextGen Tools

Evaluation with NextGen Tools

First calibration attempt: not promising

11284400 BIG C AB WHITES GULCH NR GROVELAND CA

2009-01 2009-07 2010-01 2010-07 2011-01 2011-07 2012-01 2012-07 2013-01 2013-07

TOAR

What is wrong? PET perhaps?

Selecting a Different Formulation

Second Formulation Calibration with NextGen Tools

			+
			- 1013
Vodules			
Formulat	on		
Model of an nge	n formulation		
Name*	I		
Topmod 🕶	bmi_fortran NoahOWP		
Topmod	sloth		
A BMIC implem	SLOTH	opmod ngen module	
Name			

NORR

Using different surface scheme improves simulation

11284400 BIG C AB WHITES GULCH NR GROVELAND CA

What This Does

- Provides a **single, guided interface** for model setup, calibration, execution, and evaluation
- Cleans up a lot of cognitive overhead, so the user can **focus on the domain science**
- Lets a user change the model for an experiment in **mere minutes** with a few clicks
- Enables **evidence-based decisions** right model, right place, for the right reason
- Unlocks **scientific investigations** that weren't previously possible

Back to the continental scale

From another angle

NOAR

Continental-scale NextGen proof of concept

Our working hypothesis:

Heterogeneous model formulations will be more performant than a single-model configuration

Approach:

- 1. Implement multiple model formulations in NextGen framework at each basin
- 2. Pre-select surface model
- 3. Deploy simple model-agnostic calibration routine for multiple infiltration-runoff models
 - a. Selection of Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) basins
- 4. Compare preliminary calibrated formulation output to National Water Model 2.1 and observations

Too many formulations?

Identifying the optimal surface routine

- Match formulation aridity index to CAMELS
- Aridity index=PET/Precip.
- Ratio=Al_{ngen}/Al_{baseline}

- 1.25

Aridity_ratio

0.75

Fewer iterations with pre-selected surface routine

720 iterations per basin

Many traces, one modeling framework

Spatially variable outcomes in performance

NOAN

KGE

- 0.4

- 0.2

0.0

Heterogeneous formulations provide optimal performance

Heterogeneous approach: run the best model in each basin in the same framework (same forcing data, routing, hydrofabric, etc.)

13 5

Heterogeneous formulations provide optimal performance

We improved systematic bias in runoff for more than 70% of the locations!

13 6

Integrating TWL into NextGen

September 2023

Deliverables and Timelines

Major Deliverables	Major Milestones	Planned Start Date MM/YYYY	Planned Completion Date MM/YYYY
	BMI-compliant interfaces for D-FLOW and SCHISM	10/2022	09/2023
Total Water Level Forecast Capabilities Integrated into the Next Generation Water Resources	Integration of hydrodynamic forcing data for the NWM v.3.0 Total Water Level forecasting domain into the NextGen Framework	10/2022	09/2023
Modeling Framework	Calibrated and validated Total Water Level prediction model formulations using D-FLOW and SCHISM for the NWM v.3.0 Total Water Level domain integrated into the NextGen Framework	10/2023	03/2024
	BMI-compliant D-FLOW and SCHISM models for the Great Lakes and Lake Champlain domains	10/2022	09/2023
Expanded coverage of the Total	BMI-compliant D-FLOW and SCHISM models for the Alaska domain	10/2022	09/2023
Water Level forecasting capability into the Great Lakes/Lake Champlain and Alaska Domains	Integration of hydrodynamic forcing data for the Great Lakes/Lake Champlain and Alaska domains into the NextGen Framework	10/2022	09/2023
NORR	Calibrated and validated Total Water Level prediction model formulations using D-FLOW and SCHISM for the Great Lakes/Lake Champlain and Alaska domains integrated into the NextGen Framework	10/2023	03/2024 13 8

Additional Model Domains

Alaska

SCHISM/D-Flow FM Models of Lake Champlain

- Model mesh has 137,867 nodes and 271,650 elements
- Model domain includes lake and floodplain
- Inland model boundary follows extent of HUC12's
- Downstream water level boundary on Richelieu River at St. Jean Marina, QC
- Freshwater inflows from 21 main rivers and streams (red dots)
- Freshwater runoff from precipitation
- Atmospheric forcing from AORC wind and pressure data
- Simulation period: significant floods in Mar-Aug 2011
- Five stations for calibration/validation, one for downstream boundary (yellow circles)

Alaska Mesh (2,743,977 nodes; 5,401,930 elements)

NWM in NextGen Framework

First CONUS demo of single formulation running in NextGen Framework

Next Generation Water Resources Modeling Framework -From Months to Minutes

NOAA is transforming water resources modeling

- Building common, **flexible** framework model agnostic
- Community to work collaboratively on water resources science
- Leverages multi-lingual, open source, modular approach - lowers the barrier
- Unlocks new scientific investigations

NextGen simplifies development, testing, calibration, and evaluation

- Uses **common resources** scientists focus on the science, not on the tedium
- New models configured, calibrated, executed, and evaluated in **minutes, not months**
- Enables **right tool** in **right location** for the **right reason**

Be a NextGen contributor!

• <u>https://github.com/NOAA-OWP</u> .

- <u>/ngen</u>
- /ngen-cal
- /hydrofabric
- /noah-owp-modular
- <u>/cfe</u>
- <u>/topmodel</u>
- <u>/lstm</u>
- /evapotranspiration
- /soilfreezethaw
- /snow17
- <u>/sac-sma</u>
- <u>/t-route</u>

An Overview of Current and Future of Web and Data Service Program

Modernizing Hydrologic Data Dissemination for The Office of Water Prediction

Sudhir Raj Shrestha Chip Gobs, Gautam Sood and Fernando Salas

OWP OFFICE OF WATER PREDICTION

May 23, 2023

Coastal coupling Community of Practice

Agenda

- Migrating AHPS to NWPS
- On-prem to Cloud
- Key Features/Functionality
- Interoperable Data delivery: APIs, Data Services
- Future Development and Collaboration

Migration of Advanced Hydrologic Prediction Services (AHPS) to cloud

AHPS is the main dissemination portal for WFO/RFC river forecast information - <u>water.weather.gov</u>

Main Functions

- Near Real-Time River Data and Forecast Information
- Probabilistic Information
- Static Flood Inundation Mapping (FIM) Libraries
- Precipitation Estimates (QPE)
- Data download

Integration of Hydro Program's Web Presence in NWPS

AHPS water.weather.gov

Office of Water Prediction water.noaa.gov

NWC Experimental Products weather.gov/owp

To access the Experimental PHE-BS Benics and other WHS Good BS Net Service always risk consultance and an advance advance one

National Water Prediction Service (NWPS)

NWPS Main Functionality

General Features:

- Mobile-friendly interface
- User friendly features and navigation
- API (Application Programming Interface) driven
- Service outlet for NWC Water Prediction Operations Division (WPOD)

National Map Features:

- Current/forecast status icons with gauge location pages
- QPE Display with pixel data values
- NWM Data: Stream reach, National Land Analysis, National Stream Analysis Anomaly.
- National Snow Analysis: Snow Depth and Snow water Equivalent.
- FIM Forecast Data (Flood Map Guidance): RFC 5-Day Forecast, NWM Analysis, NWM 5-Day Forecast NBM Rainfall, NWM 5-Day Forecast GFS Rainfall

NWPS in AWS Cloud : System Architecture

Data-Driven Application Programming Interfaces (APIs)

NWPS is an API-driven Web App for the dissemination of integrated water information across the NWS

Core Partners, Third Party APIs and Web Apps can leverage the NWPS API to integrate observations and forecast data into <u>their own</u> decision support tools.

WWPS StoryMap : <u>Modernizing Hydrologic Web Dissemination</u>

Enhancing Water Resources Data Service (WRDS)

WRDS is the expanding collection of feature-rich data services from the Office of Water Prediction (OWP) including:

- Hydrologic Location API
- River Forecast Center (RFC) Forecast API
- Stream Observation API
- National Water Model Forecast API
- Analysis of Record for Calibration (AORC) ERDDAP API
- Hydrologic Ensemble Forecast System (HEFS) API (upcoming)

Current Data Services Overview

10

Current Data Services Overview

11

Future: WRDS Services (HEFS)

Water Resources Data Services HEFS System Flow

Last updated: 05 - 16 - 2023

Future Development and Dissemination

- National Water Prediction Service (NWPS)
- One stop Access to Data, APIs and web services in Cloud harnessing micro services
 - APIs: NWPS, HEFS...many more
 - Interoperability: OGC
 - Translation services
- Analysis Ready Cloud Optimized (ARCO) data
 - AORC, NWM
 - Chunked data
 - Zarr, netcdf, Kerchunk
- Data Dissemination via NOAA Open Data Dissemination (NODD) and HydroVIS

Thank you!

Acknowledgement: Orion, NWS: NCO, ODIS, OOE, Field Office Staff

sudhir.shrestha@noaa.gov

For more information, please visit the following StoryMaps:

Modernizing Hydrologic Web Dissemination: AHPS to NWPS

A User's Guide to National Water Prediction Service (NWPS)

NWPS StoryMap

Patrick Tripp and Jonathan Joyce

Principal Software Engineers at RPS North America patrick.tripp@rpsgroup.com

Coastal Coupling Community of Practice Annual Meeting May 23, 2023

NWM API Background and Goals

- 2021: RPS was asked to create an API to provide access to the NWM forecast data.
- Facilitate subset of existing cloud-hosted (NODD) NWM forecast output for coastal model forcing.
- Understand the requirements and needs the coastal modeling community via community engagement (how to access the data, subset parameters, the NWM products of interest, etc.)
- Investigate optimizations of data formats for faster retrieval and/or improved hosting on cloud object stores.
- Collaborate on new approaches for data access.

Solution: Use the NODD hosted forecast data on AWS S3 using an implementation of the DAP protocol for data access.

2.7 million datapoints for each forecast

Previous River Forecast Points (~3600)

~3 orders of magnitude increase

Current capabilities

Selectable subset parameters:

- Feature ID selection
- Time range
- Reference Time
- Latitudes and longitudes of returned points
- Bounding box selection
- Terminal point retrieval
- Received output is in netCDF format
- Short-range and mid-range forecasts
- *Can use API directly without the Web UI

> Display Global Attributes								
Dimensior	IS							
	feature_id 💿	min	0	max	2,776,737	step	1	Ø
	time ⑦	min	0	max	239	step	1	
		0				C		
	reference_time 葱	min O	0	max	0	step	1	ß
	lat_lon ⑦	min	0	max	1	step	1	
-				A CONTRACT				
•		Unite	d States	in star				
Extra Opti	ons	Unite	d States		L	eaflet © Op	enStreet	Map contribu

The future:

- RPS is committed to improving data access and updating the API.
- NWM 3.0 updates.
- Improve data access using lessons learned from the NextGen DMAC project prototyping.
- Upstream tracing.

Needs:

- Feedback from the community regarding their needs. How do you use the data in your workflow?
- Users and testers. How can we improve things? Recommend capabilities and/or changes.
- Sharing of technical/implementation details, how do we go from point A to point B?

https://prototype.ioos.us/nwm

Existing API Infrastructure

- Serves indexed NWM data through a custom application and database
- 2300 lines of custom Python code
- Only supports NWM data
- Requires self-managed database
- Limited options for scaling
- Supports DAP2 protocol only
- Independent cron-based data indexing
- More info: <u>https://github.com/asascience/DAPLite</u>

Next-Gen DMAC Infrastructure

- Built on popular open-source libraries
- Optimizes data for cloud; entirely cloud-native
- Built to be scalable (runs on Kubernetes platform)
- General-purpose system(s) for making data FAIR
- Supports serving data through many different protocols, including OpenDAP
- Cloud-optimized data can be accessed directly for data science
- <u>https://github.com/asascience-open/nextgen-dmac</u>

Enhance Cloud Data Access

- Improve access to raw data by using "kerchunk" protocol to index data in buckets
- <u>https://github.com/fsspec/kerchunk</u>
- Keep optimized data up-to-date with the forecast output (run continuously)
- Provide standardized (OGC-compliant) API access to subset data
- Leverage community work: <u>https://github.com/xpublish-community</u>
- Continue to test and optimize performance using real use-cases from the community

COASTAL COUPLING COMMUNITY OF PRACTICE

THANK YOU

Patrick Tripp and Jonathan Joyce

Principal Software Engineers at RPS North America patrick.tripp@rpsgroup.com

COASTAL COUPLING COMMUNITY OF PRACTICE

ASK THE CoP ANYTHING

COASTAL COUPLING COMMUNITY OF PRACTICE

THANK YOU!

Join us again tomorrow at 9:00 AM CT

Extra Slides

